Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces.

Biomaterials

Department of Chemical Engineering, National ESCA for Biomedical Problems, University of Washington, 98195-351750, Seattle, WA, USA.

Published: September 2003

The surface of a biomaterial plays a critical role in the success of an implant. Much effort is currently being focused on controlling the chemistry at biomaterial surfaces to ensure favorable results in vivo. The successful tailoring of the surface chemistry will require a detailed surface characterization to verify that the desired changes have been made. This will include the ability to determine the composition, structure, orientation, and spatial distribution, of the molecules and chemical structures on the surface. TOF-SIMS is a powerful surface characterization technique that is able to address these requirements through both spectral analysis and direct chemical state imaging. The flexibility of the TOF-SIMS technique, and the wealth of data produced have generated much interest in its use for biomaterial characterization. This review discusses the strengths, weaknesses, and challenges of static TOF-SIMS for biomaterial surface characterization. First the basic principles of TOF-SIMS are introduced, giving an overview of the technique. Next, sample type, and other sample considerations are discussed. Then data interpretation is overviewed using examples from both spectral and imaging data. Finally, quantitative SIMS analysis is discussed and an outlook for TOF-SIMS analysis of biomaterials will be given.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0142-9612(03)00159-5DOI Listing

Publication Analysis

Top Keywords

surface characterization
12
biomaterial surfaces
8
surface
6
characterization
5
biomaterial
5
tof-sims
5
time-of-flight secondary
4
secondary ion
4
ion mass
4
mass spectrometry
4

Similar Publications

Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant in basins with intensive agriculture due to agrochemical discharges.

View Article and Find Full Text PDF

Protein-protein interactions in the cell membrane are typically mediated by glycans, with terminal sialic acid often involved in these interactions. To probe the nature of the interactions, we developed quantitative cross-linking methods involving the glycans of the glycoproteins and the polypeptide moieties of proteins. We designed and synthesized biotinylated enrichable cross-linkers that were click-tagged to metabolically incorporate azido-sialic acid on cell surface glycans to allow cross-linking of the azido-glycans with lysine residues on proximal polypeptides.

View Article and Find Full Text PDF

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates.

View Article and Find Full Text PDF

Placental malaria is characterized by the massive accumulation and sequestration of infected erythrocytes in the placental intervillous blood spaces, causing severe birth outcomes. The variant surface antigen VAR2CSA is associated with Plasmodium falciparum sequestration in the placenta via its capacity to adhere to chondroitin sulfate A. We have previously shown that the extracellular region of VAR2CSA is phosphorylated on several residues and that the phosphorylation enhances the adhesive properties of CSA-binding infected erythrocytes.

View Article and Find Full Text PDF

Influence of Photoemission Geometry on Timing and Efficiency in 4D Ultrafast Electron Microscopy.

Chemphyschem

January 2025

University of Minnesota Twin Cities, Chemical Engineering and Materials Science, 421 Washington Avenue SE, 55455, Minneapolis, UNITED STATES OF AMERICA.

Broader adoption of 4D ultrafast electron microscopy (UEM) for the study of chemical, materials, and quantum systems is being driven by development of new instruments as well as continuous improvement and characterization of existing technologies. Perhaps owing to the still-high barrier to entry, the full range of capabilities of laser-driven 4D UEM instruments has yet to be established, particularly when operated at extremely low beam currents (~fA). Accordingly, with an eye on beam stability, we have conducted particle tracing simulations of unconventional off-axis photoemission geometries in a UEM equipped with a thermionic-emission gun.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!