A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitric oxide has a role in regulating VLA-4-integrin expression on the human neutrophil cell surface. | LitMetric

Recent research demonstrates that the beta1 integrins may be involved in neutrophil migration. Here, we investigate the role of nitric oxide in the expression and function of the very late antigen-4 (VLA-4) and Mac-1 integrins on human neutrophils. Human blood neutrophils were treated with N(omega)-nitro-L-arginine methyl ester (L-NAME) and their adhesion to fibronectin (FN) and serum observed. Adhesion of neutrophils to FN and serum increased significantly following incubation with 0.1mM L-NAME by 65.5 and 44.6%, respectively. Increased adhesions to FN and serum were abolished by a VLA-4-specific monoclonal antibody, HP2/1, and a Mac-1-specific monoclonal antibody, ICRF 44, respectively. The microfilament- and microtubule-depolymerizing agents, dihydrochalasin B and nocodazole, were also able to reverse L-NAME-induced adhesion to both FN and serum. L-NAME induced a discrete increase in the expression of CD49d (VLA-4, 25.3+/-4.8%), but not CD11b, on the neutrophil cell surface, as detected by flow cytometry. Results indicate that NO has a role in regulating VLA-4 and Mac-1 function on the human neutrophil cell surface and that this modulation in integrin function is accompanied by cytoskeletal rearrangements and changes in the ability of the neutrophil to adhere to the extracellular matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-2952(03)00243-0DOI Listing

Publication Analysis

Top Keywords

neutrophil cell
12
cell surface
12
nitric oxide
8
role regulating
8
human neutrophil
8
vla-4 mac-1
8
monoclonal antibody
8
neutrophil
5
oxide role
4
regulating vla-4-integrin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!