Purpose: To evaluate the ability to determine accurate in vivo tissue-to-unbound plasma distribution coefficients (Kpue) from in vitro data.
Methods: Fresh pieces of fifteen rat tissues/organs were incubated at 37 degrees C with a homologous series of nine barbiturates covering a wide range of lipophilicity (Log P 0.02 to 4.13). Steady-state in vivo Kpue values were estimated from the tissue and plasma concentrations following simultaneous dosing by constant rate i.v. infusion of all nine barbiturates. Drug concentrations in the tissues and media were determined by HPLC with UV or mass spectrometric detection.
Results: The pharmacokinetics of the barbiturate series following constant rate i.v. infusion indicated a range of clearance (0.49 to 30 ml x min(-1) x kg(-1)) and volume of distribution at steady state (0.51 to 1.9 l x kg(-1)) values. Good agreement was observed between the in vitro and in vivo Kpu values, although for the most lipophilic barbiturates the in vitro data underpredicted the in vivo tissue distribution for all tissues.
Conclusion: The in vitro system for predicting the extent of in vivo tissue distribution works well for compounds of widely differing lipophilicity, although for the most lipophilic drugs it may result in an underprediction of in vivo values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1023912318133 | DOI Listing |
Nanomedicine (Lond)
January 2025
Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.
Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.
Adv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFPhytother Res
January 2025
Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
Renal fibrosis is the most common pathway for the development of end-stage renal disease (ESRD) in various kidney diseases. Currently, the treatment options for renal fibrosis are limited. Ferroptosis is iron-mediated lipid peroxidation, triggered mainly by iron deposition and ROS generation.
View Article and Find Full Text PDFNMR Biomed
February 2025
Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.
Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.
This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!