Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this article was to investigate the dependence of ventricular wallstress-induced refractoriness changes on pacing cycle lengths and its mechanism in anaesthetized rabbits. The rabbit heart preparation was used. The left ventricular afterload was increased by partially clipping the root of the ascending aorta. The changes in effective refractory periods (ERP) induced by the left ventricular afterload rising were examined at different pacing cycle lengths (1000, 500, 300 and 200 ms). In addition, the effect of streptomycin on these changes was also observed. The results are as follows: (1) The rising of left ventricular afterload led to marked changes in ERP at rapidly pacing cycle lengths (300 ms, 21+/-5 ms, 17.0%; 200 ms, 19+/-3 ms, 18.8%. P<0.01) than at slow ones (1000 ms, 3+/-2 ms, 1.5%; 500 ms, 7+/-3 ms, 4.0%. P>0.05); (2) Streptomycin inhibited the changes caused by the left ventricular afterload rising at pacing cycle lengths 300 ms and 200 ms (P>0.05). It is suggested that ventricular wallstress-induced refractoriness changes are pacing cycle length-dependent, and the effect of streptomycin appears to be consistent with the inhibition of stretch-activated ion channels.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!