The anti-inflammatory cytokine IL-10 can be induced by type I IFNs, but the molecular mechanisms involved have remained elusive. With in silico analysis of the human IL-10 promoter we identified a module consisting of an IFN regulatory factor 1 (IRF-1) site and a Stat3 site. We demonstrate that IFN-alpha will induce the binding of IRF-1 and Stat3 to the respective motifs. Mutational analysis revealed that inactivation of the IRF-1 motif substantially reduces trans-activation from 5- to 2-fold and that inactivation of the Stat3 motif completely ablates trans-activation by IFN-alpha. The dominant role of Stat3 in this module was confirmed with the blockade of trans-activation by a dominant negative Stat3. By contrast, Stat1 contributes a minor proportion to the DNA binding to the Stat site, and overexpression will counteract Stat3-mediated trans-activation. The data show that IFN-alpha induces the IL-10 gene via a module consisting of interdependent IRF-1 and Stat3 motifs. Of note, LPS-induced trans-activation does not target this module, since it is independent of the IRF-1 motif but completely depends on Stat3.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.171.1.285DOI Listing

Publication Analysis

Top Keywords

ifn-alpha induces
8
human il-10
8
il-10 gene
8
ifn regulatory
8
regulatory factor
8
stat3
8
module consisting
8
irf-1 stat3
8
irf-1 motif
8
motif completely
8

Similar Publications

Differential Neurotoxicity Induced in Rats by Injection of PMs from 31 Major Cities in China.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.

The effects of particulate matter (PMs) from different cities on the nervous system remain unclear. In this study, aqueous solutions of 0.45 μm membrane-filtered PM from 31 major Chinese cities were intravenously administered to rats.

View Article and Find Full Text PDF

Background: Polyclonal autologous T cells that are epigenetically reprogrammed through mTOR inhibition and IFN-α polarization (RAPA-201) represent a novel approach to the adoptive T cell therapy of cancer. Ex vivo inhibition of mTOR results causes a shift towards T central memory (T) whereas ex vivo IFN-α promotes type I cytokines, with each of these functions known to enhance the adoptive T cell therapy of cancer. Rapamycin-resistant T cells polarized for a type II cytokine phenotype were previously evaluated in the allogeneic transplantation context.

View Article and Find Full Text PDF

Interferon-α biological activity is associated with disease activity and risk of flare in cutaneous lupus erythematosus: a monocentric study of 184 patients.

J Am Acad Dermatol

January 2025

Sorbonne Université, Faculté de médecine, AP-HP, Service de Dermatologie et Allergologie, Hôpital Tenon, Paris, France; Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), INSERM U1135, Paris, France. Electronic address:

Background: Cutaneous Lupus Erythematosus (CLE) is associated with unpredictable flares and may induce permanent damage. There is currently no biomarker routinely available in CLE.

Objective: To evaluate the performance of IFN-α biological activity as biomarker of CLE activity and risk of flare.

View Article and Find Full Text PDF

Green seaweeds, which make up a major population of total seaweed worldwide, possess various therapeutic properties. The aim of the study directed at isolating a (1 → 4) linked sulfated rhamno xyloglucuronan, designated as UFP-2, from the edible green seaweed Ulva fasciata Delile, and to evaluate its efficacy in modulating immune responses and inhibiting SARS-CoV-2 (Delta variant) infection. Anti-inflammatory potential of UFP-2 was demonstrated through the regulation of key cytokines involved in inflammatory responses triggered by viral infections, including interferons (IFN-α/γ), interleukin (IL-1β/12/33), and tumor necrosis factor (TNF-α).

View Article and Find Full Text PDF

Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) plays a dual role in cancer initiation and progression. Identifying signals that modulate the function of SHP2 can improve current therapeutic approaches for IFN-α/β in HCC. We showed that cAMP-dependent protein kinase A (PKA) suppresses IFN-α/β-induced JAK/STAT signaling by increasing the phosphatase activity of SHP2, promoting the dissociation of SHP2 from the receptor for activated C-kinase 1 (RACK1) and binding to STAT1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!