Thioredoxin (Trx1) is a redox-active protein containing two active site cysteines (Cys-32 and Cys-35) that cycle between the dithiol and disulfide forms as Trx1 reduces target proteins. Examination of the redox characteristics of this active site dithiol/disulfide couple is complicated by the presence of three additional non-active site cysteines. Using the redox Western blot technique and matrix assisted laser desorption ionization time-of-flight mass spectrometry mass spectrometry, we determined the midpoint potential (E0) of the Trx1 active site (-230 mV) and identified a second redox-active dithiol/disulfide (Cys-62 and Cys-69) in an alpha helix proximal to the active site, which formed under oxidizing conditions. This non-active site disulfide was not a substrate for reduction by thioredoxin reductase and delayed the reduction of the active site disulfide by thioredoxin reductase. Within actively growing THP1 cells, most of the active site of Trx1 was in the dithiol form, whereas the non-active site was totally in the dithiol form. The addition of increasing concentrations of diamide to these cells resulted in oxidation of the active site at fairly low concentrations and oxidation of the non-active site at higher concentrations. Taken together these results suggest that the Cys-62-Cys-69 disulfide could provide a means to transiently inhibit Trx1 activity under conditions of redox signaling or oxidative stress, allowing more time for the sensing and transmission of oxidative signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M211107200 | DOI Listing |
Alzheimers Dement
December 2024
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Patiala, India.
Background: Neuroinflammation plays an important role in progression of Alzheimer's disease (AD). Interlukin-6 (IL-6) is well identified marker in initiating and regulating inflammation, and formation of senile plaques in brain. Therefore, simultaneous inhibition of both IL-6 and acetylcholinesterase (AChE) may be an effective strategy for AD.
View Article and Find Full Text PDFBackground: Neurological disorders are at epidemic levels in the world today. Various proteins are being targeted for the development of novel molecular therapeutics; however, no small-molecule inhibitors have been discovered. Recent studies suggest that there are few molecules in clinical trials for various secretase (α, β, and γ), caspase, and calpain inhibitors.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky, Lexington, KY, USA.
Background: Emerging research suggests that complementary and supportive care programs, such as music therapy, show positive short-term impacts (e.g., purposeful engagement, positive emotions) on persons with dementia who live in care facilities.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
German Center for Neurodegenerative Diseases (DZNE), site Rostock/Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany.
Background: The number of people with dementia increases worldwide. Previous studies have shown that social integration and high-quality social relationships are beneficial for reducing dementia risk and improving symptoms. Our project aimed at identifying characteristics of the social environment of people with dementia (PWD) and their relevance for PWDs' wellbeing, and at determining facilitators and barriers of the PWD's social integration.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, 37130-001, MG, Brazil.
Histone Deacetylase 6 (HDAC6) is an intriguing therapeutic target in cancer re-search, distinguished as the only HDAC family member predominantly located in the cyto-plasm. HDAC6 features two catalytic domains and a unique ubiquitin-binding domain, which sets it apart from other HDACs. Beyond its role in histone deacetylation, HDAC6 targets vari-ous nonhistone substrates, such as α-tubulin, cortactin, Heat Shock Protein 90 (HSP90), and Heat Shock Factor 1 (HSF1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!