Background: Replacing dietary saturated fatty acids (SFAs) with monounsaturated fatty acids (MUFAs) lowers LDL cholesterol, but the underlying mechanisms remain unclear.

Objective: We assessed the effects of replacing dietary SFAs with MUFAs on concentrations and subclass distributions of VLDL, intermediate-density lipoprotein, LDL, and HDL and on VLDL apolipoprotein B kinetics.

Design: Thirty-five moderately hypercholesterolemic, middle-aged volunteers consumed for 6 wk, in random order, diets containing low (L-MUFA; 7.8% of energy from MUFAs), moderate (M-MUFA; 10.3% from MUFAs), or high (H-MUFA; 13.7% from MUFAs) amounts of MUFAs. Fasting blood samples were taken from all subjects after each intervention. VLDL apolipoprotein B kinetic studies were performed in a subgroup after the L-MUFA and H-MUFA diets.

Results: Plasma cholesterol concentrations decreased in a dose-dependent manner with increasing intakes of dietary MUFAs. This change was entirely accounted for by reduced LDL cholesterol (-0.20 and -0.49 mmol/L after the M-MUFA and H-MUFA diets, respectively, compared with the concentration after the L-MUFA diet; P for trend < 0.01). Plasma triacylglycerol and HDL cholesterol were not significantly affected by the dietary intervention, nor were the concentrations of VLDL(1) (S(f) 60-400), VLDL(2) (S(f) 20-60), or intermediate-density lipoprotein (S(f) 12-20). Production and catabolic rates for VLDL(1) and VLDL(2) were also unaffected. HDL and LDL subclass distributions were not significantly altered, but as a consequence of the overall LDL lowering, concentrations of atherogenic LDL-III were 25% lower after the H-MUFA diet than after the L-MUFA diet (P = 0.02).

Conclusion: The effects of replacing dietary SFAs with MUFAs on lipoprotein metabolism appear to be almost exclusively limited to the LDL density class.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/78.1.47DOI Listing

Publication Analysis

Top Keywords

fatty acids
12
vldl apolipoprotein
12
replacing dietary
12
monounsaturated fatty
8
distributions vldl
8
mufas
8
ldl cholesterol
8
effects replacing
8
dietary sfas
8
sfas mufas
8

Similar Publications

Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.

View Article and Find Full Text PDF

Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T3SS of Bradyrhizobium sp. DOA9 plays negative effects on Arachis hypogaea symbiosis.

View Article and Find Full Text PDF

Medium- and long-chain triacylglycerols (MLCTs) are regarded as healthy premium oils; however, the health benefits of novel MLCTs enriched with lauric and α-linolenic acids are still not fully understood. This study examined the health benefits of lauric-α-linolenic structural lipids (ALSL) and physical mixture (PM) with a similar fatty acid composition in mice with obesity induced by the high-fat diet (HFD). The data indicated that ALSL is more effective than PM in counteracting obesity, insulin resistance, hyperlipidaemia, liver injury, and systemic inflammation in HFD-induced mice.

View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

Plastid-localized ZmENR1/ZmHAD1 complex ensures maize pollen and anther development through regulating lipid and ROS metabolism.

Nat Commun

December 2024

Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!