Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mammalian type II sodium-phosphate cotransporter (NaPi-II) and inorganic phosphate uptake stimulator (PiUS) genes are upregulated by dietary phosphorus (P) restriction to increase intestinal and renal P transport, but little is known about NaPi-II and PiUS regulation in other vertebrates. We studied the 1). the tissue distribution and dietary regulation of NaPi-II, PiUS, and sodium-glucose cotransporter (SGLT1) mRNA and NaPi-II protein in juvenile rainbow trout (Oncorhynchus mykiss) and 2). effects of dietary P on intestinal Pi absorption in vivo. NaPi-II, PiUS, and SGLT1 mRNA were found in the proximal and distal intestine, pyloric ceca, and kidney. PiUS mRNA was also found in the heart, gill, blood, stomach, liver, skin, and muscle. Tissue distribution of NaPi-II protein correlated with that of NaPi-II mRNA except in gill ionocytes where NaPi-II antibodies recognized related epitopes. Chronic consumption of a low-P diet increased NaPi-II and PiUS but not SGLT1 mRNA abundance in the intestine and kidney. Unlike mammals, there was no detectable shift in tissue or cellular localization of NaPi-II protein in response to dietary P restriction. Regulation of NaPi and PiUS mRNA expression was observed only in fish grown under optimal aqueous oxygen concentrations. In vivo fractional absorption of Pi by the intestine decreased in fish fed high-P diets. Decreases in absorption were less pronounced in fish previously fed low-P diets, suggesting that diet history modulates acute regulation of P absorption. Regulation of dietary Pi absorption in vivo may involve a specific change in intestinal NaPi-II and PiUS gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00127.2003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!