Pathways of intracellular communication: tetrapyrroles and plastid-to-nucleus signaling.

Bioessays

Department of Genetics, Developmental and Cellular Biology, and the Plant Sciences Institute, Iowa State University, Ames, IA 50011, USA.

Published: July 2003

Retrograde plastid-to-nucleus signaling plays a central role in coordinating nuclear and plastid gene expression. The gun (genomes uncoupled) mutants of Arabidopsis have been used to demonstrate that Mg-protoporphyrin (Mg-Proto) acts as a plastid signal to repress the transcription of nuclear photosynthesis genes (1). It is unclear how Mg-Proto triggers repression, but several components of this pathway have been recently identified. These include the products of GUN4 and GUN5. GUN5 is the ChlH subunit of Mg-chelatase, which produces Mg-Proto, and GUN4 is a regulator of ChlH activity (2). GUN4 might also play a role in photoprotection and in the trafficking of Mg-Proto.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bies.10308DOI Listing

Publication Analysis

Top Keywords

plastid-to-nucleus signaling
8
pathways intracellular
4
intracellular communication
4
communication tetrapyrroles
4
tetrapyrroles plastid-to-nucleus
4
signaling retrograde
4
retrograde plastid-to-nucleus
4
signaling plays
4
plays central
4
central role
4

Similar Publications

The interplay of singlet oxygen and ABI4 in plant growth regulation.

Trends Plant Sci

October 2024

College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China. Electronic address:

Abscisic acid (ABA) and the AP2/ERF (APETALA 2/ETHYLENE-RESPONSIVE FACTOR)-type transcription factor ABA INSENSITIVE 4 (ABI4) control plant growth and development. We review how singlet oxygen, which is produced in chloroplasts of the fluorescent mutant of Arabidopsis thaliana (arabidopsis), and ABI4 may cooperate in transcriptional and translational reprogramming to cause plants to halt growth or demise. Key elements of singlet oxygen- and ABI4-dependent chloroplast-to-nucleus retrograde signaling involve the chloroplast EXECUTER (EX) 1 and EX2 proteins as well as nuclear WRKY transcription factors.

View Article and Find Full Text PDF

Unlabelled: The intricate communication between plastids and the nucleus, shaping stress-responsive gene expression, has long intrigued researchers. This study combines genetics, biochemical analysis, cellular biology, and protein modeling to uncover how the plastidial metabolite MEcPP activates the stress-response regulatory hub known as the Rapid Stress Response Element (RSRE). Specifically, we identify the HAT1/TPL/IMPα- 9 suppressor complex, where HAT1 directly binds to RSRE and its activator, CAMTA3, masking RSRE and sequestering the activator.

View Article and Find Full Text PDF

Orchestration of Photosynthesis-Associated Gene Expression and Galactolipid Biosynthesis during Chloroplast Differentiation in Plants.

Plant Cell Physiol

June 2024

Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan.

The chloroplast thylakoid membrane is composed of membrane lipids and photosynthetic protein complexes, and the orchestration of thylakoid lipid biosynthesis and photosynthesis-associated protein accumulation is considered important for thylakoid development. Galactolipids consist of ∼80% of the thylakoid lipids, and their biosynthesis is fundamental for chloroplast development. We previously reported that the suppression of galactolipid biosynthesis decreased the expression of photosynthesis-associated nuclear-encoded genes (PhAPGs) and photosynthesis-associated plastid-encoded genes (PhAPGs).

View Article and Find Full Text PDF

Functional conservation of GENOMES UNCOUPLED1 in plastid-to-nucleus retrograde signaling in tomato.

Plant Sci

June 2024

Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China. Electronic address:

Retrograde signaling between plastids and the nucleus is vital for chloroplast biogenesis and environmental responses. GENOMES UNCOUPLED1 (GUN1) was proposed to be a central integrator of multiple retrograde signaling pathways in the model plant Arabidopsis thaliana (Arabidopsis). However, the function of GUN1 orthologs in other plant species has not been well studied.

View Article and Find Full Text PDF

In plant cells, plastids form elongated extensions called stromules, the regulation and purposes of which remain unclear. Here, we quantitatively explore how different stromule structures serve to enhance the ability of a plastid to interact with other organelles: increasing the effective space for interaction and biomolecular exchange between organelles. Interestingly, electron microscopy and confocal imaging showed that the cytoplasm in Arabidopsis thaliana and Nicotiana benthamiana epidermal cells is extremely thin (around 100 nm in regions without organelles), meaning that inter-organelle interactions effectively take place in 2D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!