Mustard gas exposure causes adult respiratory distress syndrome associated with lung injury. The purpose of this study was to investigate whether an antioxidant, such as N-acetylcysteine (NAC), has any protective effect. Guinea pigs were given single exposure (0.5-6 mg/kg body weight) of 2-chloroethyl ethyl sulfide (CEES) as a mustard analogue intratracheally and maintained for various lengths of time (1 h to 21 days). Within 1 h of CEES infusion at 4 mg/kg, high levels of tumor necrosis factor alpha (TNF-alpha), ceramides, and nuclear factor kappaB accumulated in lung and alveolar macrophages. Both acid and neutral sphingomyelinases were activated within 4 h. These signal transduction events were associated with alteration in the oxygen defense system. Within 1 h of exposure to CEES (6 mg/kg body weight), there was 10-fold increase in the (125)I-BSA leakage into lung tissue, indicating severe lung injury. Although low level of CEES exposure (0.5 mg/kg body weight) produced symptoms of chemical burn in lung as early as 1 h after exposure, the severity of edema, congestion, hemorrhage, and inflammation increased progressively with time (1 h to 21 days). Feeding of single dose of NAC (0.5 g) by gavage just before the CEES infusion was ineffective to counteract these effects. However, consumption of the antioxidant in drinking water for 3 or 30 days prior to CEES exposure significantly inhibited the induction of TNF-alpha, activation of neutral and acid sphingomyelinases, production of ceramides, activation of caspases, leakage of (125)I-bovine serum albumin ((125)I-BSA) into lung tissue, and histological alterations in lung. Pretreatment with NAC for 3 and 30 days protected against 69-76% of the acute lung injury. Therefore, NAC may be an antidote for CEES-induced lung injury.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.10076DOI Listing

Publication Analysis

Top Keywords

lung injury
16
mg/kg body
12
body weight
12
lung
9
2-chloroethyl ethyl
8
ethyl sulfide
8
mustard analogue
8
time days
8
cees infusion
8
lung tissue
8

Similar Publications

Background: The benefit of mechanical circulatory support (MCS) with Impella (Abiomed, Inc, Danvers, MA) for patients undergoing non-emergent, high-risk percutaneous coronary intervention (HR-PCI) is unclear and currently the subject of a large randomized clinical trial (RCT), PROTECT IV. While contemporary registry data from PROTECT III demonstrated improvement of outcomes with Impella when compared with historical data (PROTECT II), there is lack of direct comparison to the HR-PCI cohort that did not receive Impella support.

Methods: We retrospectively identified patients from our institution meeting PROTECT III inclusion criteria (left ventricular ejection fraction [LVEF] <35% with unprotected left main or last remaining vessel or LVEF <30% undergoing multivessel PCI), and compared this group (NonIMP) to the published outcomes data from the PROTECT III registry (IMP).

View Article and Find Full Text PDF

Objective: We aimed to understand the potential therapeutic and anti-inflammatory effects of the phosphodiesterase-4 (PDE4) inhibitor roflumilast in models of pulmonary infection caused by betacoronaviruses.

Methods: Mice were infected intranasally with murine hepatitis virus (MHV-3) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Roflumilast was given to MHV-3-infected mice therapeutically at doses of 1 mg/kg or 10 mg/kg, or prophylactically at 10 mg/kg.

View Article and Find Full Text PDF

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

The global burden of COVID-19 continues to rise, and despite significant progress in vaccine development, there remains a critical need for effective treatments for the severe inflammation and acute lung injury associated with SARS-CoV-2 infection. In this study, we explored the antiviral properties of a plant-derived complex consisting of flavonol and hydroxyorganic acid compounds. Our research focused on the ability of the flavonol and hydroxyorganic acid complex to suppress the activity of several key proteins involved in the replication and maturation of SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!