The male-specific region of the Y chromosome, the MSY, differentiates the sexes and comprises 95% of the chromosome's length. Here, we report that the MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerate and ampliconic. These classes contain all 156 known transcription units, which include 78 protein-coding genes that collectively encode 27 distinct proteins. The X-transposed sequences exhibit 99% identity to the X chromosome. The X-degenerate sequences are remnants of ancient autosomes from which the modern X and Y chromosomes evolved. The ampliconic class includes large regions (about 30% of the MSY euchromatin) where sequence pairs show greater than 99.9% identity, which is maintained by frequent gene conversion (non-reciprocal transfer). The most prominent features here are eight massive palindromes, at least six of which contain testis genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature01722 | DOI Listing |
<b>Background and Objective:</b> In jojoba plants, the sex is usually difficult to identify, especially before flowering and during the very early stages of development. This stage is expected to facilitate breeding programs and adopt an invention and approach to isolate the GPAT gene identified between males and females: The study aimed at early diagnosis of sex in jojoba by sequence characterized by GPAT gene of sex-determining by simplex PCR. To prove the existence of the GPAT gene in male jojoba plants which may be the sex determination and identification in all plant systems.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Research Centre for Animal Production and Aquaculture, Via Salaria 31, 00015 Monterotondo, Italy.
Lipizzan is a famous horse breed dating back to 1580 when the original stud of Lipica was established by the Hasburg Archduke Charles II. Currently, the Italian State Stud of Lipizzan Horses (ASCAL) is a conservation nucleus managed through strict mating rules where mitochondrial DNA sequences are used to verify the correct assignment of mares to a historical pedigree maternal lineage. Here, we analyzed the D-loop sequences of Lipizzan horses from the ASCAL in Monterotondo (Rome, Italy) in order to confirm their pedigree assignment to known female founder families.
View Article and Find Full Text PDFHGG Adv
January 2025
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).
View Article and Find Full Text PDFElife
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation.
The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity 'entry' sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Biology, Indiana University Indianapolis, Indianapolis, Indiana, United States of America.
Studies with genetically modified mice have implicated the transcriptional regulator STAT3 as a key modulator of bone development. STAT3-OKO knockout mouse lines were generated in two genetic backgrounds, pure C57BL/6 (STAT3-OKO-BL) and mixed C57BL/6, CD1 (STAT3-OKO-M). Both lines exhibited defective postnatal bone development resulting in reduced body weight and shortened femurs that displayed low bone mineral density as well as cortical widening and thinning in the diaphyseal region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!