Nucleic acid-based techniques for post-transcriptional regulation of molecular targets.

Curr Opin Nephrol Hypertens

Departments of Medicine and Physiology and Biophysics, Rammelkamp Center for Research and Education, Cleveland, USA.

Published: July 2003

Purpose Of Review: Messenger RNA, transfer RNA and ribosomal RNA were defined long ago as essential components for transmission of genetic code from DNA. However, there are many other, less commonly recognized RNAs, such as ribozymes and small interfering RNAs, which are distinguished by their ability to inhibit RNA function. This review describes the basic molecular concepts and potential therapeutic applications of RNA inhibition by a variety of molecules, including ribozymes, antisense oligonucleotides, aptamers and small interfering RNAs.

Recent Findings: A tremendous amount of data has recently emerged about double-stranded small interfering RNAs, which bind and degrade corresponding messenger RNAs by a process called RNA interference. Though native small interfering RNAs have been shown to be biologically relevant in animals and plants, synthetic types have rapidly become powerful tools for post-transcriptional inhibition of specific gene products to determine functional consequences in simple organisms and in-vitro model systems. More established means of RNA inhibition, such as with ribozyme and antisense strategies, continue to be viable options for in-vitro experiments, and form the basis for many ongoing clinical trials.

Summary: Ribozymes, antisense oligonucleotides, aptamers and small interfering RNAs are potentially useful reagents for in-vitro investigation and for treatment of kidney and hypertension diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00041552-200307000-00010DOI Listing

Publication Analysis

Top Keywords

small interfering
20
interfering rnas
16
rna inhibition
8
ribozymes antisense
8
antisense oligonucleotides
8
oligonucleotides aptamers
8
aptamers small
8
rna
7
rnas
6
small
5

Similar Publications

Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.

View Article and Find Full Text PDF

Peri-centrosomal localization of small interfering RNAs in C. elegans.

Sci China Life Sci

January 2025

Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.

The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C.

View Article and Find Full Text PDF

Anticancer Effects of MAPK6 siRNA-Loaded PLGA Nanoparticles in the Treatment of Breast Cancer.

J Cell Mol Med

January 2025

Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkiye.

siRNA-loaded nanoparticles open new perspectives for cancer treatment. MAPK6 is upregulated in breast cancer and is involved in cell growth, differentiation and cell cycle regulation. Herein, we aimed to investigate the anticancer effects of MAPK6 knockdown by using MAPK6 siRNA-loaded PLGA nanoparticles (siMAPK6-PLGA-NPs) in MCF-7 breast cancer cells.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.

View Article and Find Full Text PDF

In this chapter, we provide a method for silencing target genes in epidermal cells via RNA interference. Specifically, we describe a protocol for transfection-mediated delivery of small interfering RNA oligonucleotides (siRNA). Functional assays are indispensable to characterize the biological consequences of gene knockdowns, and we also provide a method to analyze alterations in cell adhesion properties, consequent to knockdown of genes involved in this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!