Glucagon-like peptide-2 and common therapeutics in a murine model of ulcerative colitis.

J Pharmacol Exp Ther

Department of Physiology, University of Toronto, Medical Sciences Building, Room 3366, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.

Published: July 2003

The intestinal hormone glucagon-like peptide-2 (GLP-2) enhances bowel growth and reduces the severity of colonic injury in dextran sulfate sodium (DSS)-induced colitis in mice. In humans, ulcerative colitis is normally treated with aminosalicylates (ASAs) and corticosteroids (CSs) to reduce inflammation. However, whether the intestinotropic effects of GLP-2 are altered when combined with ASAs and/or CSs has not previously been explored. Thus, each agent [vehicle, ASA (sulfasalazine), CS (methylprednisolone), and ASA + CS] was administered alone or with GLP-2 to normal mice or mice with 3.5% DSS in the drinking water, for 10 consecutive days. GLP-2 treatment of DSS-mice increased survival and small intestinal weight (p < 0.05), and decreased body weight loss and colonic damage (p < 0.05). Furthermore, GLP-2 increased the number of proliferating cells in the colonic crypts of DSS-mice (p < 0.05). Administration of ASA, CS, or ASA + CS alone did not affect growth of the intestine in DSS-mice. However, administration of GLP-2 in combination with ASA was permissive for the beneficial effects of GLP-2 on survival and colonic damage, whereas CS treatment prevented these effects of GLP-2. Concomitant administration of GLP-2 with ASA + CS resulted in intermediate effects. No differences between colonic myeloperoxidase activity or IkappaB levels (an inhibitor of the nuclear factor-kappaB pro-inflammatory pathway) were found for any of these therapeutic agents. When taken together, the ability of GLP-2 to protect colonic mucosal architecture in DSS-colitis, and its effectiveness when given in combination with ASA, but not with CS, suggests a novel approach for the treatment of patients with colitis.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.103.051771DOI Listing

Publication Analysis

Top Keywords

effects glp-2
12
glp-2
10
glucagon-like peptide-2
8
ulcerative colitis
8
colonic damage
8
administration glp-2
8
combination asa
8
asa
7
colonic
6
peptide-2 common
4

Similar Publications

Type 2 diabetes (T2D), the most common form, is marked by insulin resistance and β-cell failure. β-cell dysfunction under high-glucose-high-lipid (HG-HL) conditions is a key contributor to the progression of T2D. This study evaluates the comparative effects of 10 nM semaglutide, 10 nM tirzepatide, and 1 mM metformin, both alone and in combination, on INS-1 β-cell maintenance and function under HG-HL conditions.

View Article and Find Full Text PDF

Comparative Effects of GLP-1 and GLP-2 on Beta-Cell Function, Glucose Homeostasis and Appetite Regulation.

Biomolecules

November 2024

Centre for Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK.

Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) are related intestinal L-cell derived secretory products. GLP-1 has been extensively studied in terms of its influence on metabolism, but less attention has been devoted to GLP-2 in this regard. The current study compares the effects of these proglucagon-derived peptides on pancreatic beta-cell function, as well as on glucose tolerance and appetite.

View Article and Find Full Text PDF

Adults with type 1 diabetes (T1D) are increasingly overweight or obese, in part due to intensive insulin therapy. Newer non-insulin medications targeting both hyperglycemia and weight loss are approved for people with type 2 diabetes. These drugs also reduce cardiovascular disease, the major cause of mortality in people with diabetes.

View Article and Find Full Text PDF

The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is estimated at 32.4%, reflecting its growing clinical significance. MASLD, which includes MASLD and metabolic dysfunction-associated steatohepatitis (MASH) has been linked to increased metabolic, cardiovascular, and malignant morbidity.

View Article and Find Full Text PDF

Objective: The objective is to assess the effectiveness and safety of tirzepatide, liraglutide, and SGLT2i in individuals diagnosed with type 2 diabetes.

Methods: An inquiry was undertaken within the electronic database spanning from its inception to February 11th, 2024, aimed at identifying randomized controlled trials that assess the efficacy and safety of tirzepatide, liraglutide, canagliflozin, ertugliflozin, empagliflozin, dapagliflozin, and henagliflozin. Perform a network meta-analysis to examine the distinctions among them (PROSPERO registration number: CRD42024537006).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!