We describe here a method for the synthesis of oligonucleotides with block structure (padlock probes, primers for multiplex polymerase chain reaction (PCR), and ligation-independent cloning), based on the ligation of presynthesized parts by T4 DNA ligase. The advantages of this approach are: (i) suitability of the technology for any producer-from synthesis company to laboratory, (ii) high quality and adjustable scale of synthesis, and (iii) possibility of including any modified bases inexpensively in the common part of the oligonucleotide. Clear difference of sizes of products and substrates makes the synthesis amenable to automation. For large series of padlock probes, the price per one primer approaches the price of the locus-specific parts. We demonstrate the application of this method to two different tasks: preparative-scale production of padlock probes and small-scale synthesis of PCR primers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0003-2697(03)00250-1 | DOI Listing |
ACS Omega
December 2024
Department of Gastroenterology, Xiamen University Affiliated Chenggong Hospital, Xiamen City, Fujian Province 361003, China.
MicroRNAs (miRNAs), which play critical roles in regulating gene expression and cell functions, are recognized as potential biomarkers for various human diseases, including gastric ulcers. The reliable, specific, and sensitive detection of miRNA is highly recommended for the clinical diagnosis and therapy of different diseases. Herein, we depict a label-free and low-background fluorescent assay for the highly sensitive detection of miRNAs by coupling target miRNA-triggered cyclization of a padlock, circular padlock-mediated catalytic hairpin assembly (CHA), and primer exchange reaction (PER)-assisted signal generation.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
Accurate and sensitive detection of Pax-5a gene is the basis of early diagnosis and prediction of acute leukemia. This research aims to develop a universal dual-mode sensing method enables ultrasensitive gene detection based on smart control of DNA amplification by nucleic acid beacons e to form programmed dendrimer. The Pax-5a target gene triggers the opening of smart gate hairpin probe (Hp), exposing the stem sequence as the primer to bind with padlock probe for rolling circle amplification (RCA).
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Colorectal Surgery, College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, Fujian, China.
MicroRNA (miRNA) is a promising biomarker for the early diagnosis of pancreatic cancer. To enable sensitive and reliable miRNA detection, we have developed a one-pot isothermal CRISPR/Dx detection system by combining rolling circle amplification (RCA) and CRISPR/Cas12a. RCA and CRISPR/Cas12a reactions are carried out in a single closed tube, bypassing the transferring step.
View Article and Find Full Text PDFAdv Neurobiol
November 2024
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Biomark Res
November 2024
Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria.
Background: Metastatic prostate cancer is a highly heterogeneous and dynamic disease and practicable tools for patient stratification and resistance monitoring are urgently needed. Liquid biopsy analysis of circulating tumor cells (CTCs) and circulating tumor DNA are promising, however, comprehensive testing is essential due to diverse mechanisms of resistance. Previously, we demonstrated the utility of mRNA-based in situ padlock probe hybridization for characterizing CTCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!