Charge equilibria and pK(a) of malvidin-3-glucoside by electrophoresis.

Anal Biochem

School of Agriculture and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, South Australia 5064, Australia.

Published: July 2003

Paper electrophoresis has been used over the pH range 1.2 to 10.4 to measure apparent pK(a) values for malvidin-3-O-glucoside of pK(a(1)) 1.76+/-0.07, pK(a(2)) 5.36+/-0.04, and pK(a(3)) 8.39+/-0.07. Using solvent partitioning between buffered aqueous solutions and n-octanol, several micro-pK(a) constants for malvidin-3-O-glucoside were also identified, highlighting the complex nature of malvidin-3-glucoside equilibria. As a nonspectrophotometric procedure, the charge-dependent electrophoretic mobility method provided independent information on the net charge and color of anthocyanin species at wine pH (ca. 3.6). At this pH, the color of malvidin-3-glucoside in red wines is consistent only with the uncharged quinonoidal base as a major colored component of the equilibria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0003-2697(03)00249-5DOI Listing

Publication Analysis

Top Keywords

charge equilibria
4
equilibria pka
4
pka malvidin-3-glucoside
4
malvidin-3-glucoside electrophoresis
4
electrophoresis paper
4
paper electrophoresis
4
electrophoresis range
4
range 104
4
104 measure
4
measure apparent
4

Similar Publications

Influence of pyridinic nitrogen on tautomeric shifts and charge transport in single molecule keto enol equilibria.

Sci Rep

January 2025

Qatar Environment & Energy Research institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar.

Keto-enol tautomerism in organic molecules presents a potential for modulating the charge transport at the nanoscale. The reduction of the isomerization barrier and favoring the highly conductive enol form are the main challenges towards practical implementation of this phenomenon. Using density functional theory calculations, we have demonstrated that pyridinic nitrogen in biphenyl molecules with keto-enol tautomerism can successfully make the conductive enol form energetically more favorable.

View Article and Find Full Text PDF

The pH dependence of the free energy level of the flash-induced primary charge pair PI was determined by a combination of the results from the indirect charge recombination of PQ and from the delayed fluorescence of the excited dimer (P*) in the reaction center of the photosynthetic bacterium , where the native ubiquinone at the primary quinone binding site Q was replaced by low-potential anthraquinone (AQ) derivatives. The following observations were made: (1) The free energy state of PI was pH independent below pH 10 (-370 ± 10 meV relative to that of the excited dimer P*) and showed a remarkable decrease (about 20 meV/pH unit) above pH 10. A part of the dielectric relaxation of the PI charge pair that is not insignificant (about 120 meV) should come from protonation-related changes.

View Article and Find Full Text PDF

This study aimed to investigate the effect of selected compounds from the group of triterpene sapogenins on model phosphatidylcholine membranes. Two types of biological membrane model systems were used in the work, i.e.

View Article and Find Full Text PDF

Contrasting behavior of urea in strengthening and weakening confinement effects on polymer collapse.

J Chem Phys

October 2024

Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

Article Synopsis
  • Biomolecules in living cells experience crowded environments due to high concentrations of cosolutes and macromolecules, affecting their dynamics and structure.
  • This study uses molecular dynamics simulations to analyze how confinement and the presence of cosolutes like urea influence the collapse equilibria of three different model polymers.
  • The findings reveal that confinement usually promotes polymer collapse, but the effects of urea vary: it weakens collapses in hydrophobic polymers while enhancing collapses in hydrophilic ones, leading to complex interactions that impact the stability of biomolecules in cells.
View Article and Find Full Text PDF

Positively charged residues play a significant role in enhancing the antibacterial activity of calcitermin.

J Inorg Biochem

January 2025

Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, L. Borsari 46, 44121 Ferrara, Italy. Electronic address:

A systematic study on the human antimicrobial peptide calcitermin (VAIALKAAHYHTHKE) and its carefully designed derivatives was undertaken to verify the impact of divalent copper and zinc ions on the stability, coordination and antimicrobial activity of the formed complexes. In this work we investigate the calcitermin mutants where the alanine in position 7 and 8 is substituted with an arginine residue, with the aim of enhancing the antibacterial activity. Additionally, the analogue where alanine in position 7 is replaced with a histidine is considered, to obtain a chelating sequence with four histidines in alternate position; the aim of this change was to increase the cationic properties of the peptide under acidic conditions and possibly enhance its binding ability towards the metal ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!