It has traditionally been assumed that processing within the visual system proceeds in a bottom-up, feedforward manner from retina to higher cortical areas. In addition to feedforward processing, it is now clear that there are also important contributions to sensory encoding that rely upon top-down, feedback (reentrant) projections from higher visual areas to lower ones. By utilizing transcranial magnetic stimulation (TMS) in a metacontrast masking paradigm, we addressed whether feedback processes in early visual cortex play a role in visual awareness. We show that TMS of visual cortex, when timed to produce visual suppression of an annulus serving as a metacontrast mask, induces recovery of an otherwise imperceptible disk. In addition to producing disk recovery, TMS suppression of an annulus was greater when a disk preceded it than when an annulus was presented alone. This latter result suggests that there are effects of the disk on the perceptibility of the subsequent mask that are additive and are revealed with TMS of the visual cortex. These results demonstrate spatial and temporal interactions of conscious vision in visual cortex and suggest that a prior visual stimulus can influence subsequent perception at early stages of visual encoding via feedback projections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0960-9822(03)00337-3 | DOI Listing |
Surg Radiol Anat
January 2025
Anatomy Department, University of Western Brittany (UBO), Brest, France.
Purpose: The aim was to establish a functional MRI protocol for analyzing human stereoscopic vision in clinical practice. The feasibility was established in a cohort of 9 healthy subjects to determine the functional cortical areas responsible for virtually relief vision.
Methods: Nine healthy right-handed subjects underwent orthoptic examination and functional MRI.
Innovation (Camb)
January 2025
Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada.
Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Integrative Anatomy, Nagoya City University Graduate School of Medicinal Sciences.
Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA.
Humans adjust their movement to changing environments effortlessly via multisensory integration of the effector's state, motor commands, and sensory feedback. It is postulated that frontoparietal (FP) networks are involved in the control of prehension, with dorsomedial (DM) and dorsolateral (DL) regions processing the reach and the grasp, respectively. This study tested (5F, 5M participants) the differential involvement of FP nodes (ventral premotor cortex - PMv, dorsal premotor cortex - PMd, anterior intraparietal sulcus - aIPS, and anterior superior parietal-occipital cortex - aSPOC) in online adjustments of reach-to-grasp coordination to mechanical perturbations that disrupted arm transport.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!