Aims: To develop a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP)-based assay to genotype for hepatic CYP3A5 expression and to use this assay to study a British population.
Methods: CYP3A5-specific primers were designed with one including a base-pair mismatch to create a RsaI site in samples positive for G6986 (CYP3A5*3 allele) [correction]. Following PCR and RsaI digestion, different band patterns on electrophoresis were predicted for individuals positive for CYP3A5 (CYP3A5*1 allele) compared with those who do not express the gene (CYP3A5*3 homozygotes). The assay was validated by DNA sequencing. DNA samples from a human liver bank consisting of 22 livers whose CYP3A5 expression had been determined by immunoblotting and a group of random individuals (n = 100) from the North-east of England were genotyped by the new assay.
Results: In the liver bank, five out of 22 samples expressed CYP3A5 at significant levels (>20 pmol mg-1 protein) and were found to have the genotype CYP3A5*1/CYP3A5*3 by the PCR-RFLP assay. All other liver DNA samples were CYP3A5*3 homozygotes. In the group of 100 random individuals, 13 had the genotype CYP3A5*1/CYP3A5*3 and all others were CYP3A5*3 homozygotes, predicting that 13% (95% confidence interval (CI) 6%, 20%) would show significant hepatic CYP3A5 expression. The frequency for the CYP3A5*1 allele was 0.065 (95% CI 0.032, 0.097).
Conclusions: We have developed a simple assay for the detection of the CYP3A5*1/CYP3A5*3 alleles and shown that in a British population their frequency is similar to that reported previously. We have also shown a good correlation between hepatic CYP3A5 expression and genotype for a British Caucasian liver bank.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1884247 | PMC |
http://dx.doi.org/10.1046/j.1365-2125.2003.01798.x | DOI Listing |
J Nanobiotechnology
January 2025
Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China.
Fullerenols, a water-soluble polyhydroxy derivative of fullerene, hold promise in medical and materials science due to their unique properties. However, concerns about their potential embryotoxicity remain. Using a pregnancy mouse model and metabolomics analysis, our findings reveal that fullerenols exposure during pregnancy not only significantly reduced mice placental weight and villi thickness, but also altered the classes and concentrations of metabolites in the mouse placenta.
View Article and Find Full Text PDFBalkan Med J
January 2025
Department of Clinical Pharmacy, China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, China.
Yakugaku Zasshi
January 2025
Department of Personalized Medicine and Preventive Healthcare Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University.
Notable advances have recently been achieved in drug therapies for renal cell carcinoma (RCC). Several tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) have been approved for metastatic RCC (mRCC). The current first-line treatment for mRCC involves combination therapies using TKIs and ICIs.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Otolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!