Nociceptin/orphanin FQ (N/OFQ) is the endogenous agonist of the N/OFQ peptide receptor (NOP receptor). It is released from a larger precursor polypeptide, called prepro-nociceptin (ppN/OFQ) from which, in addition to N/OFQ, other biologically active neuropeptides may be derived. Increasing evidence indicates that exogenous application of N/OFQ to the central nervous system of mice and rats induces pro- and antinociceptive effects depending on the dose and site of administration. Much less is known about a potential contribution of endogenous N/OFQ to pain control. Here, we have used a genetic approach to address this topic. Mice deficient in either the NOP receptor (NOP-R-/- mice) or the N/OFQ precursor polypeptide (ppN/OFQ-/- mice) or both (double knockout mice) were compared with wild-type littermates in animal models of acute and tonic pain. Nociceptive responses to acute noxious heat of all three types of mutant mice were indistinguishable from those of wild-type mice. Accordingly, nociceptive behaviour was very similar in the early phase of the formalin test. However, NOP-R-/-, ppN/OFQ-/- and double knockout mice showed markedly stronger nociceptive responses during prolonged nociceptive stimulation in the second phase of the formalin test and significantly lower thermal pain thresholds in inflamed tissue after zymosan A injection. These results indicate that N/OFQ contributes significantly to endogenous pain control during prolonged nociceptive stimulation but does not affect acute pain sensitivity. Among the three types of mutant mice nociceptive behaviour was nearly identical, indicating that the lack of other potential ppN/OFQ products in the ppN/OFQ-/- mice was apparently without effect on the nociceptive phenotype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1460-9568.2003.02676.x | DOI Listing |
Front Plant Sci
January 2025
Institute of Life Sciences, Kangwon National University, Chuncheon, Republic of Korea.
Plant peptides, synthesized from larger precursor proteins, often undergo proteolytic cleavage and post-translational modifications to form active peptide hormones. This process involves several proteolytic enzymes (proteases). Among these, SBTs (serine proteases) are a major class of proteolytic enzymes in plants and play key roles in various regulatory mechanisms, including plant immune response, fruit development and ripening, modulating root growth, seed development and germination, and organ abscission.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
The inverse electron demand Diels-Alder (IEDDA) cycloaddition between tetrazines and strained dienophiles is recognized as a fast and specific reaction. The integrating tetrazines and strained dienophiles onto the backbone of polysaccharides yield appropriate water-soluble precursors for IEDDA cycloaddition. Due to the high specificity of the IEDDA reaction and its outstanding cytocompatibility, a range of cargos (live cells, peptides and pharmaceuticals) can be effectively encapsulated in polysaccharide solutions throughout the hydrogel formation.
View Article and Find Full Text PDFActa Neuropathol
January 2025
Department of Clinical Sciences, Lund Brain Injury Laboratory for Neurosurgical Research, Lund University, 222 20, Lund, Sweden.
Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, St. Paul, Minnesota, USA.
N-Methylation of the peptide backbone confers pharmacologically beneficial characteristics to peptides that include greater membrane permeability and resistance to proteolytic degradation. The borosin family of ribosomally synthesized and post-translationally modified peptides offer a post-translational route to install amide backbone α-N-methylations. Previous work has elucidated the substrate scope and engineering potential of two examples of type I borosins, which feature autocatalytic precursors that encode N-methyltransferases that methylate their own C-termini in trans.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, P. R. China.
MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!