A mechanical lung simulator can be used to simulate specific lung pathologies, to test lung-function equipment, and in instruction. A new approach to mechanical simulation of lung behavior is introduced that uses a computer-controlled active mechatronic system. The main advantage of this approach is that the static and dynamic properties of the simulator can easily be adjusted via the control software. A nonlinear single-compartment mathematical model of the artificially ventilated respiratory system has been derived and incorporated into the simulator control system. This model can capture both the static and dynamic compliance of the respiratory system as well as nonlinear flow-resistance properties. Parameters in this model can be estimated by using data from artificially ventilated patients. It is shown that the simulation model fits patient data well. This mathematical model of the respiratory system was then matched to a model of the available physical equipment (the simulator, actuators, and the interface electronics) in order to obtain the desired lung behavior. A significant time delay in the piston motion control loop has been identified, which can potentially cause oscillations or even instability for high compliance values. Therefore, a feedback controller based on the Smith-predictor scheme was developed to control the piston motion. The control system, implemented on a personal computer, also includes a user-friendly interface to allow easy parameter setting.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2003.812166DOI Listing

Publication Analysis

Top Keywords

respiratory system
16
artificially ventilated
12
mechanical simulation
8
lung behavior
8
static dynamic
8
mathematical model
8
control system
8
piston motion
8
motion control
8
system
7

Similar Publications

Background: Mycoplasma pneumoniae is a prevalent pathogen in pediatric community-acquired pneumonia. Currently, limited literature exists on the clinical utilization of pathogen-targeted sequencing technologies.

Methods: Targeted next-generation sequencing (tNGS) technology was employed to analyze bronchoalveolar lavage fluid (BALF) from 1,070 hospitalized pediatric patients with acute lower respiratory tract infections.

View Article and Find Full Text PDF

Neurotrophins and their receptors in the peripheral nervous system and non-nervous tissue of fish.

Fish Physiol Biochem

January 2025

Centro Tlaxcala de Biología de La Conducta, Universidad Autónoma de Tlaxcala, 90070, Tlaxcala, Mexico.

Trophic factors, such as neurotrophins, are fundamental for cellular processes including differentiation, growth, survival, and regeneration. These molecules exhibit significant morphological and phylogenetic conservation throughout the animal kingdom, indicating conserved functions. In fish, the oldest and most diverse group of vertebrates, neurotrophins, and their receptors play pivotal roles not only within the central nervous system but also in various peripheral tissues.

View Article and Find Full Text PDF

A Perspective on Lung Cancer and Lung Microbiome: Insight on Immunity.

Immun Inflamm Dis

February 2025

Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Arak Branch, Arak, Iran.

Background: Although the carcinogenic potential of microbes has long been recognized, their significance may have been underestimated. Currently, the connection between microbiota and cancer is under extensive research. The lung microbiota may serve as a proxy for the state of lung health based on its crucial role in preserving lung hemostasis.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive and chronic interstitial lung disease characterized by irreversible loss of lung function and a poor prognosis. Type I collagen, a major component of the extracellular matrix, plays a central role in the pathogenesis of fibrosis and is considered a key molecular target for therapeutic intervention. While current anti-fibrotic therapies demonstrate limited efficacy in slowing disease progression, their clinical impact remains suboptimal due to poor pharmacokinetic properties and non-curative therapy.

View Article and Find Full Text PDF

Background: Data on type 2 (T2)-low severe asthma (SA) frequency is scarce, resulting in an undefined unmet therapeutic need in this patient population. Our objective was to assess the frequency and characterize the profile and burden of T2-low SA in Greece.

Methods: PHOLLOW was a cross-sectional study of adult SA patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!