Disruption of the blood brain barrier (BBB) and transendothelial migration of inflammatory cells are crucial steps in the development of demyelinating lesions in multiple sclerosis (MS). Occludin and vascular endothelial-cadherin (VE-cadherin) are two major components of the tight junctions (TJs) in the brain microvasculature that help to create the BBB. In the present study, we investigated the effect of serum from MS patients on the expression of these two junctional markers and on the endothelial integrity. Serum from six MS patients in exacerbation, six in remission, and six normal controls (10% by volume) was incubated with cultured endothelial cells, and the expression of occludin and VE-cadherin was measured by immunoblotting. Serum from MS patients in exacerbation significantly reduced the expression of occludin and VE-cadherin compared with patients in remission and normal controls. This disintegrating effect was more pronounced for occludin than for VE-cadherin. We assume that the elevation in cytokines or other serum-soluble factors in MS patients in exacerbation likely provokes downregulation of occludin and VE-cadherin. This downregulation of TJs proteins may, therefore, contribute to the disruption of the BBB in this condition.

Download full-text PDF

Source
http://dx.doi.org/10.1191/1352458503ms916oaDOI Listing

Publication Analysis

Top Keywords

occludin ve-cadherin
20
serum patients
16
patients exacerbation
12
multiple sclerosis
8
cultured endothelial
8
endothelial cells
8
remission normal
8
normal controls
8
expression occludin
8
occludin
6

Similar Publications

The development of the brain's vascular system is a predominantly prenatal process in mammalian species and is required for neurogenesis and further brain development. Our recent work on fetal pig has revealed that many neurodevelopmental processes start well before birth and proceed rapidly reaching near-mature status already around birth. Here, we analyzed the development of neocortical vasculature from embryonic day (E) 45 onward (gestation in pig lasts 114 days) using qualitative and quantitative image analyses and protein blots.

View Article and Find Full Text PDF

Angiotensin II Induces Vascular Endothelial Dysfunction by Promoting Lipid Peroxidation-Mediated Ferroptosis via CD36.

Biomolecules

November 2024

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.

Angiotensin II (Ang II) is an effective vasoconstriction peptide, a major effector molecule of the renin-angiotensin-aldosterone system (RAAS) and one of the important causes of endothelial dysfunction. Ferroptosis is considered to be involved in the occurrence and development of cardiovascular diseases. This study is dedicated to exploring the role and mechanism of Ang II-induced ferroptosis in HUVECs and to finding molecular targets for vascular endothelial injury and dysfunction during the progression of hypertension.

View Article and Find Full Text PDF

The mechanisms underlying pathological changes in the central nervous system (CNS) following Coxsackievirus A16 (CV-A16) infection have not yet been elucidated. IFN-γ-inducible protein-10 (IP-10) is often used as a predictive factor to monitor early virus infection. It has also been reported that IP-10 plays a pivotal role in neuroinflammation.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) has long posed challenges in clinical practice, lacking established preventive and therapeutic approaches. Lianhua Qingke (LHQK), a patented traditional Chinese medicine (TCM), has been found to have anti-inflammatory effects for ameliorating ALI/ARDS induced by lipopolysaccharide (LPS). This study aimed to investigate the effects and potential mechanisms of LHQK on endothelial protection in LPS-induced ALI/ARDS and in LPS-induced human pulmonary microvascular endothelial cells (HPMECs) injury

Methods: In the animal experiment, we induced an ALI/ARDS model by intratracheal injection of LPS (5 mg/mL).

View Article and Find Full Text PDF

[ improves learning and memory functions of APP/PS1 transgenic mice by regulating brain fluid metabolism].

Nan Fang Yi Ke Da Xue Xue Bao

October 2024

Key Laboratory of Basic Pharmacology of Ministry of Education & Ministry of Education International Cooperation Joint Laboratory of Characteristic Ethnic Medicine, Zunyi Medical University, Zunyi 563000, China.

Objective: To explore the mechanism by which (YGS) improves learning and memory abilities of APP/PS1 transgenic mice in light of cerebral fluid metabolism regulation.

Methods: Three-month-old male APP/PS1 transgenic mice and wild-type C57BL/6 mice were both randomized into control group, model group, donepezil (1.67 mg/kg) group, and YGS (7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!