Idiotopic sequences are created after V, D and J recombinations and by somatic mutations during affinity maturation of immunoglobulin (Ig) molecules, and may therefore be potential immunogenic epitopes. Idiotope-specific T cells are able to activate and sustain the B cells producing such idiotopes. It is therefore possible that idiotope-specific intrathecal T cells could help maintain the persisting intrathecal synthesis of oligoclonal IgG observed in patients with multiple sclerosis (MS). This study was undertaken to examine T-cell responses to cerebrospinal fluid (CSF) IgG. Peripheral blood mononuclear cells (PBMC) from 14 of 21 MS patients and four of 17 control patients with other neurological diseases proliferated upon stimulation with autologous CSF IgG, while five and three, respectively, responded to serum IgG. By comparison, responses to myelin basic protein were recorded in only four MS and three control patients. Data from a limited number of patients indicate that the CSF IgG responsive cells were CD4+ and human leucocyte antigen DR restricted, that PBMC also respond to CSF IgG from other MS patients and that the CSF may contain T cells responding to autologous CSF IgG. This suggests that CSF IgG, or substances bound to this IgG, may represent T-cell immunogens, which could contribute to the intrathecal immune response in MS.

Download full-text PDF

Source
http://dx.doi.org/10.1191/1352458503ms906oaDOI Listing

Publication Analysis

Top Keywords

csf igg
24
igg
9
multiple sclerosis
8
cerebrospinal fluid
8
control patients
8
autologous csf
8
cells
7
patients
7
csf
7
cells multiple
4

Similar Publications

Recent studies, typically using patient cerebrospinal fluid (CSF), have suggested that different autoantibodies (Aabs) acting on their respective receptors, may underlie neuropsychiatric disorders. The GluN1 (NR1) subunit of the N-methyl-D-aspartate receptor (NMDAR) has been identified as a target of anti-NMDAR Aabs in a number of central nervous system (CNS) diseases, including encephalitis and autoimmune epilepsy. However, the role or the nature of Aabs responsible for effects on neuronal excitability and synaptic plasticity is yet to be established fully.

View Article and Find Full Text PDF

Background: Kappa free light chains (KFLCs) are emerging as promising biomarkers for intrathecal B cell activity for diagnosing multiple sclerosis (MS) through cerebrospinal fluid (CSF) analysis. In this study, we evaluated the ability of KFLC formulas to identify the presence of MS and their agreement with the 'gold standard' of CSF IgG oligoclonal bands (OCBs).

Methods: A total of 233 patients were included in this study: 149, comprising 43 males and 106 females, had MS, and the remainder, 40 males and 44 females, had other neurological diseases (ONDs).

View Article and Find Full Text PDF

Background: Awareness of the characteristics of glial fibrillary acidic protein autoantibody (GFAP-IgG) associated myelitis facilitates early diagnosis and treatment. We explored features in GFAP-IgG myelitis and compared them with those in myelitis associated with aquaporin-4 IgG (AQP4-IgG) and myelin oligodendrocyte glycoprotein IgG (MOG-IgG).

Methods: We retrospectively reviewed data from patients with GFAP-IgG myelitis at the First Affiliated Hospital of Zhengzhou University and Henan Children's Hospital from May 2018 to May 2023.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple sclerosis (MS) is an autoimmune disease affecting young adults, where the immune system attacks the protective myelin sheath of nerve cells, leading to neurological symptoms.
  • The study aims to analyze the glycosylation profiles of immunoglobulin G (IgG) in suspected MS patients through advanced techniques like MALDI-TOF mass spectrometry to identify differences in glycan patterns associated with varying oligoclonal band types.
  • Findings indicate that changes in IgG glycosylation may act as potential biomarkers for MS, aiding in understanding the disease's mechanisms and improving diagnostic methods.
View Article and Find Full Text PDF

Introduction: Longitudinally extensive spinal cord lesions (LESCL) are characterized by T2-hyperintense signals spanning at least three vertebral body segments, with neuromyelitis optica spectrum disorders (NMOSD) being a significant cause. This study aimed to characterize the clinical, radiological, serological, and cerebrospinal fluid (CSF) features of LESCL and to compare NMOSD and non-NMOSD cases.

Methods: We conducted a retrospective cross-sectional study of adult patients diagnosed with LESCL at our center over a twelve-year period collecting data on demographics, clinical presentations, MRI findings, CSF analysis, and serological testing for AQP4-IgG and MOG-IgG antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!