We describe the first virus-like particle of a hyperthermophilic euryarchaeote which was discovered in a strain of "Pyrococcus abyssi" previously characterized in our laboratory. This particle, named PAV1, is lemon-shaped (120 nm x 80 nm), with a short tail terminated by fibers, and resembles the virus SSV1, the type member of the Fuselloviridae, isolated from Sulfolobus shibatae. Sensitivity of the virus-like particle to organic solvents and detergents suggested that the envelope of PAV1 may contain lipids in addition to proteins. It contains a double-stranded circular DNA of 18 kb which is also present in high copy number in a free form in the host cytoplasm. No integrated form of the PAV1 genome could be detected in the host chromosome. Under standard growth conditions, the host cells continuously release PAV1 particles into the culture supernatant without spontaneous lysis, with a maximum reached in the late stationary phase. UV, gamma irradiation, treatment with mitomycin C, and various physiological stresses had no effect on PAV1 production. Screening of a large number of Thermococcales isolates did not permit to find a sensitive host. These results suggest that PAV1 persists in the host strain in a stable carrier state rather than a prophage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC161591 | PMC |
http://dx.doi.org/10.1128/JB.185.13.3888-3894.2003 | DOI Listing |
J Virol
January 2025
Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.
The imperative for developing robust tools to detect, analyze, and characterize viruses has become increasingly evident as they continue to threaten human health. In this review, we focus on recent advancements in studying human viruses with flow virometry (FV), an emerging technique that has gained considerable momentum over the past 5 years. These advancements include the application of FV in viral surface phenotyping, viral protein functionality, virus sorting, vaccine development, and diagnostics.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
Goose parvovirus (GPV) is an etiological agent of Derzsy's disease, afflicting geese and Muscovy ducks worldwide. Its high mortality rate among goslings and ducklings causes large losses to the waterfowl industry. Toward molecular and structural characterization, virus-like particles (VLPs) of GPV were produced, and the capsid structure was determined by cryogenic electron microscopy (cryo-EM) at a resolution of 2.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
Background: The development of a protective vaccine is critical for conclusively ending the human immunodeficiency virus (HIV) epidemic.
Methods: We constructed nucleotide-modified mRNA vaccines expressing HIV-1 Env and Gag proteins. Env-gag virus-like particles (VLPs) were generated through co-transfection with env and gag mRNA vaccines.
Vaccines (Basel)
January 2025
Clinical Development, Takeda Pharmaceuticals International AG, Farman Strasse 11, Opfikon, 8152 Zurich, Switzerland.
Background: Major global economic and health burdens due to norovirus gastroenteritis could be addressed by an effective vaccine.
Methods: In this study, 428 adult recipients of various compositions of the norovirus vaccine candidate, HIL-214, were followed for 5 years, to assess immune responses to its virus-like particle antigens, GI.1 and GII.
Vaccines (Basel)
December 2024
Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
Background: Foot-and-mouth disease (FMD) causes significant economic losses, prompting vaccination as a primary control strategy. Virus-like particles (VLPs) have emerged as promising candidates for FMD vaccines but require adjuvants to enhance their immunogenicity. In this study, we evaluated the immunogenicity of a VLP-based vaccine with a water-in-oil-in-water (W/O/W) emulsion adjuvant, named WT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!