The expression of PRL and its receptor (PRLR) were characterised during sea bream embryonic and larval development, by semi-quantitative and quantitative RT-PCR, respectively, until 46 days post-hatch (DPH). Immunocytochemistry with antisera specific for sea bream PRLR was carried out with larval sections from hatching up to 46 DPH. A single transcript of PRL (1.35 Kb) and PRLR (2.8 Kb) identical to the transcripts previously characterised in adult tissue, are present in sea bream embryos and larvae. PRL expression is first detectable at neurula and in all samples collected thereafter. The lowest levels of PRL mRNA are detected in sea bream embryos up until neurula when expression starts to increase. The maximal levels of PRL expression were detected at 24 DPH. PRLR transcripts first appear at 12h post-fertilisation (0.002 rho mol/microg total larvae RNA) (blastula) and increase significantly during gastrulation (0.245 rho mol/microg total larvae RNA) reaching a maximum at 2 DPH (0.281 rho mol/microg total larvae RNA). After hatching a significant reduction in PRLR expression is observed which reaches a minimum at 4 DPH (0.103 rho mol/microg total larvae RNA), gradually increasing thereafter. Immunocytochemistry revealed the presence of PRLR in early post-hatching stages of larvae in tissues derived from all three germ layers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0016-6480(03)00083-2 | DOI Listing |
Molecules
January 2025
Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all'Adige, TN, Italy.
This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified.
View Article and Find Full Text PDFMicroorganisms
January 2025
Institute of Aquaculture Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Spain.
The significant microbiota variability represents a key feature that makes the full comprehension of the functional interaction between microbiota and the host an ongoing challenge. To overcome this limitation, in this study, fish intestinal microbiota was analyzed through a meta-analysis, identifying the core microbiota and constructing stochastic Bayesian network (BN) models with SAMBA. We combined three experiments performed with gilthead sea bream juveniles of the same hatchery batch, reared at the same season/location, and fed with diets enriched on processed animal proteins (PAP) and other alternative ingredients (NOPAP-PP, NOPAP-SCP).
View Article and Find Full Text PDFMar Drugs
December 2024
Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal.
Co-products from the frozen fish processing industry often lead to financial losses. Therefore, it is essential to transform these co-products into profitable goods. This study explores the production of fish protein hydrolysates (FPH) from three co-products: the heads and bones of black scabbardfish (), the carcasses of gilthead seabream (), and the trimmings of Nile perch ().
View Article and Find Full Text PDFAquac Nutr
January 2025
Department of Animal Science, Laboratory of Applied Hydrobiology, Agricultural University of Athens, Iera Odos 75 11855, Athens, Greece.
One of the main challenges in aquaculture is the constant search for sustainable alternative feed ingredients that can successfully replace fishmeal (FM) without any negative effects on fish growth and health. The goal of the present study was to develop a toolbox for rapidly anticipating the dynamics of fish growth following the introduction of a new feed; nonlethal, biochemical, and molecular markers that provide insights into physiological changes in the fish. A nutritional challenge by feeding a conventional feed rich in FM protein (FM diet) versus an experimental feed rich in plant protein (PP) and low FM inclusion (PP diet), in 20 different families of gilthead sea bream () was performed.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan. Electronic address:
In this study, a pair of matured specimens of gilthead sea bream (Sparus aurata Linnaeus, 1758) were collected at a depth of approximately 20 m near Keelung Port, northern Taiwan (25°11'32″N, 121°47'8″E), on November 23, 2024. The specimens were identified and confirmed as S. aurata through both morphological and molecular analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!