A comparative theoretical study of a bimolecular reaction in aqueous solution and catalyzed by the enzyme catechol O-methyltransferase (COMT) has been carried out by a combination of two hybrid QM/MM techniques: statistical simulation methods and internal energy minimizations. In contrast to previous studies by other workers, we have located and characterized transition structures for the reaction in the enzyme active site, in water and in a vacuum, and our potential of mean force calculations are based upon reaction coordinates obtained from features of the potential energy surfaces in the condensed media, not from the gas phase. The AM1/CHARMM calculated free energy of activation for the reaction of S-adenosyl methionine (SAM) with catecholate catalyzed by COMT is 15 kcal mol(-1) lower the AM1/TIP3P free-energy barrier for the reaction of the trimethylsulfonium cation with the catecholate anion in water at 300 K, in agreement with previous estimates. The thermodynamically preferred form of the reactants in the uncatalyzed model reaction in water is a solvent-separated ion pair (SSIP). Conversion of the SSIP into a contact ion pair, with a structure resembling that of the Michaelis complex (MC) for the reaction in the COMT active site, is unfavorable by 7 kcal mol(-1), largely due to reorganization of the solvent. We have considered alternative ways to estimate the so-called "cratic" free energy for bringing the reactant species together in the correct orientation for reaction but conclude that direct evaluation of the free energy of association by means of molecular dynamics simulation with a simple standard-state correction is probably the best approach. The latter correction allows for the fact that the size of the unit cell employed with the periodic boundary simulations does not correspond to the standard state concentration of 1 M. Consideration of MC-like species allows a helpful decomposition of the catalytic effect into preorganization and reorganization phases. In the preorganization phase, the substrates are brought together into the MC-like species, either in water or in the enzyme active site. In the reorganization phase, the roles of the enzymic and aqueous environments may be compared directly because reorganization of the substrate is about the same in both cases. Analysis of the electric field along the reaction coordinate demonstrates that in water the TS is destabilized with respect to the MC-like species because the polarity of the solute diminishes and consequently the reaction field is also decreased. In the enzyme, the electric field is mainly a permanent field and consequently there is only a small reorganization of the environment. Therefore, destabilization of the TS is lower than in solution, and the activation barrier is smaller.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0299497DOI Listing

Publication Analysis

Top Keywords

active site
12
free energy
12
mc-like species
12
reaction
10
catechol o-methyltransferase
8
enzyme active
8
kcal mol-1
8
ion pair
8
electric field
8
enzyme
5

Similar Publications

Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.

View Article and Find Full Text PDF

Background: People with malignancy of undefined primary origin (MUO) have a poor prognosis and may undergo a protracted diagnostic workup causing patient distress and high cancer related costs. Not having a primary diagnosis limits timely site-specific treatment and access to precision medicine. There is a need to improve the diagnostic process, and healthcare delivery and support for these patients.

View Article and Find Full Text PDF

H, N, C backbone resonance assignment of human Alkbh7.

Biomol NMR Assign

January 2025

Department of Chemistry, Iowa State University, Hach Hall, 2438 Pammel Drive, Ames, IA, 50011, USA.

The Alkbh7 protein, a member of the Alkylation B (AlkB) family of dioxygenases, plays a crucial role in epigenetic regulation of cellular metabolism. This paper focuses on the NMR backbone resonance assignment of Alkbh7, a fundamental step in understanding its three-dimensional structure and dynamic behavior at the atomic level. Herein, we report the backbone H, N, C chemical shift assignment of the full-length human Alkbh7.

View Article and Find Full Text PDF

Copper-dependent halogenase catalyses unactivated C-H bond functionalization.

Nature

January 2025

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.

Carbon-hydrogen (C-H) bonds are the foundation of essentially every organic molecule, making them an ideal place to do chemical synthesis. The key challenge is achieving selectivity for one particular C(sp)-H bond. In recent years, metalloenzymes have been found to perform C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Advancements in the Research of for the Treatment of Colorectal Cancer.

Am J Chin Med

January 2025

School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine (NJUCM), Nanjing, Jiangsu, P. R. China.

Colorectal cancer, characterized by its high incidence, concealed early symptoms, and poor prognosis at advanced stages, ranks as the third leading cause of cancer-related deaths worldwide. (AM) refers to the dried roots of (Fisch.) Bge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!