Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glycosidases are some of the most ubiquitous enzyme in nature. Their biological significance, coupled to their enormous catalytic prowess derived from tight binding of the transition state, is reflected in their importance as therapeutic targets. Many glycosidase inhibitors are known. Imino sugars are often potent inhibitors, yet many facets of their mode of action, such as their degree, if any, of transition-state "mimicry" and their protonation state when bound to the target glycosidase remain unclear. Atomic resolution analysis of the endoglucanase, Cel5A, in complex with a cellobio-derived isofagomine in conjunction with the pH dependence of Ki and kcat/KM reveals that this compound binds as a protonated sugar. Surprisingly, both the enzymatic nucleophile and the acid/base are unprotonated in the complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja034917k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!