Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vibratory roughness perception occurs when people feel a surface with a rigid probe. Accordingly, perceived roughness should reflect probe and surface geometry, exploratory speed, and force. Experiments 1 and 2 compared magnitude estimation of roughness with the bare finger and two types of probes, one designed to eliminate force moments, under the subject's active control. Experiments 3 and 4 varied speed under passive control. Log magnitude was consistently a quadratic function of log spacing between elements in the surface. The location of the function's peak was related to the drop point--that is, the spacing at which the probe can just drop between elements--which is affected by probe tip diameter, element height, and speed. Other parameters of the quadratic were affected by probe type and speed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/bf03194587 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!