Cluster chemical ionization for improved confidence level in sample identification by gas chromatography/mass spectrometry.

Rapid Commun Mass Spectrom

School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Published: August 2003

Upon the supersonic expansion of helium mixed with vapor from an organic solvent (e.g. methanol), various clusters of the solvent with the sample molecules can be formed. As a result of 70 eV electron ionization of these clusters, cluster chemical ionization (cluster CI) mass spectra are obtained. These spectra are characterized by the combination of EI mass spectra of vibrationally cold molecules in the supersonic molecular beam (cold EI) with CI-like appearance of abundant protonated molecules, together with satellite peaks corresponding to protonated or non-protonated clusters of sample compounds with 1-3 solvent molecules. Like CI, cluster CI preferably occurs for polar compounds with high proton affinity. However, in contrast to conventional CI, for non-polar compounds or those with reduced proton affinity the cluster CI mass spectrum converges to that of cold EI. The appearance of a protonated molecule and its solvent cluster peaks, plus the lack of protonation and cluster satellites for prominent EI fragments, enable the unambiguous identification of the molecular ion. In turn, the insertion of the proper molecular ion into the NIST library search of the cold EI mass spectra eliminates those candidates with incorrect molecular mass and thus significantly increases the confidence level in sample identification. Furthermore, molecular mass identification is of prime importance for the analysis of unknown compounds that are absent in the library. Examples are given with emphasis on the cluster CI analysis of carbamate pesticides, high explosives and unknown samples, to demonstrate the usefulness of Supersonic GC/MS (GC/MS with supersonic molecular beam) in the analysis of these thermally labile compounds. Cluster CI is shown to be a practical ionization method, due to its ease-of-use and fast instrumental conversion between EI and cluster CI, which involves the opening of only one valve located at the make-up gas path. The ease-of-use of cluster CI is analogous to that of liquid CI in ion traps with internal ionization, and is in marked contrast to that of CI with most other standard GC/MS systems that require a change of the ion source.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.1057DOI Listing

Publication Analysis

Top Keywords

mass spectra
12
cluster
11
cluster chemical
8
chemical ionization
8
confidence level
8
level sample
8
sample identification
8
cluster mass
8
supersonic molecular
8
molecular beam
8

Similar Publications

The Site of Protonation Affects the Dissociation of Protonated α- and β-Pinene Ions.

Rapid Commun Mass Spectrom

March 2025

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.

Rationale: In electrospray ionization and atmospheric pressure chemical ionization, the protonation site directly guides the ion's dissociation. But what if the site of protonation is ambiguous? In this study, we explored the unimolecular reactions of protonated α- and β-pinene ions with a combination of tandem mass spectrometry and theory. Each has multiple potential protonation sites that influence their chemistry.

View Article and Find Full Text PDF

Automatic scent creation by cheminformatics method.

Sci Rep

December 2024

Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Integrated Research (IIR), Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori, Yokohama, 226-8503, Kanagawa, Japan.

The sense of smell is fundamental for various aspects of human existence including the flavor perception, environmental awareness, and emotional impact. However, unlike other senses, it has not been digitized. Its digitalization faces challenges such as the lack of reliable odor sensing technology or the precise scent delivery through olfactory displays.

View Article and Find Full Text PDF

Diagnostic Accuracy of Novel Protein Biomarkers in Saliva to Detect Periodontitis Using Untargeted 'SWATH' Mass Spectrometry.

J Clin Periodontol

December 2024

Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.

Aim: To discover new salivary biomarkers to diagnose periodontitis and evaluate the impact of age and smoking on predictive capacity.

Material And Methods: Saliva samples were collected from 44 healthy periodontal individuals and 41 with periodontitis. Samples were analysed by sequential window acquisition of all theoretical mass spectra (SWATH-MS), and proteins were identified by employing the UniProt database.

View Article and Find Full Text PDF

Calcium-organic matter fouling in nanofiltration: Synchrotron-based X-ray fluorescence and absorption near-edge structure spectroscopy for speciation.

Water Res

December 2024

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:

Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.

View Article and Find Full Text PDF

Application of Proteomic Methods in Oomycete Biology.

Methods Mol Biol

December 2024

The Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.

The biochemical makeup of any organism provides insight into key factors regarding its biological functions. These factors can be explored using proteomics, which allows us to obtain a snapshot of the protein content and abundance in an organism, cell type or sub-cellular compartment. Here, we describe proteomic methodologies that can be used to dissect the biochemical mechanism of phytopathogenicity in oomycetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!