Natural killer T (NKT) cells have been implicated in diverse immune responses ranging from suppression of autoimmunity to tumor rejection. Thymus-dependent NKT cells are positively selected by the major histocompatibility complex class I-like molecule CD1d, but the molecular events downstream of CD1d are still poorly understood. Here, we show that distinct members of the Rel/nuclear factor (NF)-kappa B family of transcription factors were required in both hematopoietic and nonhematopoietic cells for normal development of thymic NKT cells. Activation of NF-kappa B via the classical I kappa B alpha-regulated pathway was required in a cell autonomous manner for the transition of NK-1.1-negative precursors that express the TCR V alpha 14-J alpha 18 chain to mature NK-1.1-positive NKT cells. The Rel/NF-kappa B family member RelB, on the other hand, had to be expressed in radiation resistant thymic stromal cells for the generation of early NK-1.1-negative NKT precursors. Moreover, NF-kappa B-inducing kinase (NIK) was required for both constitutive thymic DNA binding of RelB and the specific induction of RelB complexes in vitro. Thus, distinct Rel/NF-kappa B family members in hematopoietic and nonhematopoietic cells regulate NKT cell development with a unique requirement for NIK-mediated activation of RelB in thymic stroma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193952PMC
http://dx.doi.org/10.1084/jem.20022234DOI Listing

Publication Analysis

Top Keywords

nkt cells
16
rel/nuclear factor
8
family members
8
natural killer
8
cell development
8
hematopoietic nonhematopoietic
8
nonhematopoietic cells
8
rel/nf-kappa family
8
cells
7
nkt
6

Similar Publications

Hepatocellular carcinoma (HCC) represents the most prevalent form of primary liver cancer and has a high mortality rate. Caspase-8 plays a pivotal role in an array of cellular signaling pathways and is essential for the governance of programmed cell death mechanisms, inflammatory responses, and the dynamics of the tumor microenvironment. Dysregulation of caspase-8 is intricately linked to the complex biological underpinnings of HCC.

View Article and Find Full Text PDF

Inhibitory killer cell immunoglobulin-like receptors (iKIRs) are a family of inhibitory receptors that are expressed by natural killer (NK) cells and late-stage differentiated T cells. There is accumulating evidence that iKIRs regulate T cell-mediated immunity. Recently, we reported that T cell-mediated control was enhanced by iKIRs in chronic viral infections.

View Article and Find Full Text PDF

Background: Intrauterine adhesion (IUA) is a common cause of clinically refractory infertility, and there exists significant heterogeneity in the treatment outcomes among IUA patients with the similar severity after transcervical resection of adhesion(TCRA). The underlying mechanism of different treatment outcomes occur remains elusive, and the precise contribution of various cell subtypes in this process remains uncertain.

Results: Here, we performed single-cell transcriptome sequencing on 10 human endometrial samples to establish a single-cell atlas differences between patients who responded to estrogen therapy and those who did not.

View Article and Find Full Text PDF

Intraepithelial type 1 innate lymphoid cells (ieILC1s) are tissue-resident lymphocytes in the microenvironment of head and neck squamous cell carcinoma. Here, we evaluate how these cells influence T-cell trafficking to tumors. We generated cytotoxic ieILC1-like cells from natural killer (NK) cells in vitro.

View Article and Find Full Text PDF

Natural killer (NK) cell activity is influenced by cytokines and microenvironment factors, resulting in remarkably diverse functions, by contributing to inflammatory responses or serving as rheostats of adaptive immunity. Using single cell RNA sequencing (scRNA-seq), we identified a CD56NK cell population associated with hematopoietic stem cell transplant recipients protected from acute graft-versus-host disease (GVHD). We further define a role for the combination of interleukin-2 (IL-2) and transforming growth factor β1 (TGF-β1) in promoting a regulatory phenotype in NK cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!