Combination of cis-platinum with ionizing radiation is one of the most promising anticancer treatments that appears to be more efficient than radiotherapy alone. Unlike conventional X-ray emitters, accelerators of high energy particles like synchrotrons display powerful and monochromatizable radiation that makes the induction of an Auger electron cascade in cis-platinum molecules [also called photoactivation of cis-platinum (PAT-Plat)] theoretically possible. Here, we examined the molecular consequences of one of the first attempts of synchrotron PAT-Plat, performed at the European Synchrotron Research Facility (Grenoble-France). PAT-Plat was found to result in an extra number of slowly repairable DNA double-strand breaks, inhibition of DNA-protein kinase activity, dramatic nuclear relocalization of RAD51, hyperphosphorylation of the BRCA1 protein, and activation of proto-oncogenic c-Abl tyrosine kinase.

Download full-text PDF

Source

Publication Analysis

Top Keywords

extra number
8
synchrotron photoactivation
4
photoactivation cisplatin
4
cisplatin elicits
4
elicits extra
4
number dna
4
dna breaks
4
breaks stimulate
4
stimulate rad51-mediated
4
rad51-mediated repair
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!