During the course of a mechanism-based screening program designed to identify new microtubule-disrupting agents from natural products, we identified a crude extract from Tacca chantrieri that initiated Taxol-like microtubule bundling. Bioassay-directed purification of the extract yielded the highly oxygenated steroids taccalonolides E and A. The taccalonolides caused an increased density of cellular microtubules in interphase cells and the formation of thick bundles of microtubules similar to the effects of Taxol. Mitotic cells exhibited abnormal mitotic spindles containing three or more spindle poles. The taccalonolides were evaluated for antiproliferative effects in drug-sensitive and multidrug-resistant cell lines. The data indicate that taccalonolide E is slightly more potent than taccalonolide A in drug-sensitive cell lines and that both taccalonolides are effective inhibitors of cell proliferation. Both taccalonolides are poorer substrates for transport by P-glycoprotein than Taxol. The ability of the taccalonolides to circumvent mutations in the Taxol-binding region of beta-tubulin was examined using the PTX 10, PTX 22, and 1A9/A8 cell lines. The data suggest little cross-resistance of taccalonolide A as compared with Taxol, however, the data from the PTX 22 cell line indicate a 12-fold resistance to taccalonolide E, suggesting a potential overlap of binding sites. Characteristic of agents that disrupt microtubules, the taccalonolides caused G(2)-M accumulation, Bcl-2 phosphorylation, and initiation of apoptosis. The taccalonolides represent a novel class of plant-derived microtubule-stabilizers that differ structurally and biologically from other classes of microtubule-stabilizers.
Download full-text PDF |
Source |
---|
Eur J Epidemiol
January 2025
Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden.
The Stockholm Early Detection of Cancer Study (STEADY-CAN) cohort was established to investigate strategies for early cancer detection in a population-based context within Stockholm County, the capital region of Sweden. Utilising real-world data to explore cancer-related healthcare patterns and outcomes, the cohort links extensive clinical and laboratory data from both inpatient and outpatient care in the region. The dataset includes demographic information, detailed diagnostic codes, laboratory results, prescribed medications, and healthcare utilisation data.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Zentalis Pharmaceuticals, Inc., San Diego, CA, USA.
Upregulation of Cyclin E1 and subsequent activation of CDK2 accelerates cell cycle progression from G1 to S phase and is a common oncogenic driver in gynecological malignancies. WEE1 kinase counteracts the effects of Cyclin E1/CDK2 activation by regulating multiple cell cycle checkpoints. Here we characterized the relationship between Cyclin E1/CDK2 activation and sensitivity to the selective WEE1 inhibitor azenosertib.
View Article and Find Full Text PDFSci Rep
January 2025
School of Medicine, Nankai University, Tianjin, 300071, China.
Cholangiocarcinoma (CCA), a highly aggressive form of cancer, is known for its high mortality rate. A Disintegrin and Metalloprotease Domain-like Protein Decysin-1 (ADAMDEC1) can promote the development and metastasis in various tumors by degrading the extracellular matrix. However, its regulatory mechanism in CCA remains unclear.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics, Engineering and Technology, University of York, Heslington, York, YO10 5DD, UK.
Prostate cancer is a disease which poses an interesting clinical question: Should it be treated? Only a small subset of prostate cancers are aggressive and require removal and treatment to prevent metastatic spread. However, conventional diagnostics remain challenged to risk-stratify such patients; hence, new methods of approach to biomolecularly sub-classify the disease are needed. Here we use an unsupervised self-organising map approach to analyse live-cell Raman spectroscopy data obtained from prostate cell-lines; our aim is to exemplify this method to sub-stratify, at the single-cell-level, the cancer disease state using high-dimensional datasets with minimal preprocessing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!