Cell cycle checkpoints play a central role in genomic stability. The human DNA topoisomerase II-binding protein 1 (TopBP1) protein contains eight BRCA1 COOH terminus motifs and shares similarities with Cut5, a yeast checkpoint Rad protein. TopBP1 also shares many features with BRCA1. We report that, when expression of TopBP1 protein is inhibited in BRCA1 mutant cells, mimicking a TopBP1, BRCA1 double-negative condition, the G(2)-M checkpoint is strongly abrogated and apoptosis is increased after ionizing radiation. However, a BRCA1-negative or a TopBP1-negative background resulted in only partial abrogation of the G(2)-M checkpoint. The BRCA1 mutant and TopBP1-reduced condition specifically destroys regulation of the Chk1 kinase but not the Chk2 kinase, suggesting involvement in the ataxia telangiectasia-related pathway. These results indicate that both TopBP1 and BRCA1 specifically regulate the G(2)-M checkpoint, partially compensating each function.

Download full-text PDF

Source

Publication Analysis

Top Keywords

g2-m checkpoint
12
dna topoisomerase
8
topoisomerase ii-binding
8
ii-binding protein
8
protein brca1
8
brca1 regulate
8
regulate g2-m
8
cell cycle
8
protein topbp1
8
topbp1 protein
8

Similar Publications

Cell cycle checkpoints are stringent quality control mechanisms that regulate cell cycle progression and division. Cancer cells often develop a dependency on the G2/M cell cycle checkpoint to facilitate DNA repair and resolve intrinsic or therapy-induced DNA damage. This dependency leads to therapy resistance, continuous cell division, and disease progression.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is an inflammation-associated tumor with a dismal prognosis. Immunotherapy has become an important treatment strategy for HCC, as immunity is closely related to inflammation in the tumor microenvironment. Inflammation regulates the expression of programmed death ligand-1 (PD-L1) in the immunosuppressive tumor microenvironment and affects immunotherapy efficacy.

View Article and Find Full Text PDF

5-FU is a widely used chemotherapy drug for esophageal carcinomas, but therapy failure has been observed in 5-FU-resistant patients. Overcoming this resistance is a significant challenge in cancer treatment, requiring identifying and targeting important resistance mechanisms. PYGO2 expression is crucial in developing resistance to various chemotherapy drugs.

View Article and Find Full Text PDF

The current chemotherapy treatments for liver cancer have shown limited effectiveness. Therefore, there is an urgent need to develop new drugs to combat this disease more effectively. This study reports synthesis of cobalt oxide nanoparticles coated with glucose, and conjugated with Ellagic acid.

View Article and Find Full Text PDF

Benzothiazole-triazole hybrids: Novel anticancer agents inducing cell cycle arrest and apoptosis through Bcl-2 inhibition in triple-negative breast cancer.

Bioorg Chem

February 2025

Department of Chemistry, SRICT-Institute of Science and Research, UPL University of Sustainable Technology, Ankleshwar Valia Road, Vataria 393135, India. Electronic address:

In this study, we aim to detail the design and synthesis of a series of benzothiazole tethered triazole compounds that incorporate acetamide chains, with the purpose of investigating their potential as anticancer agents. The structural integrity of the compounds was confirmed through characterization using H NMR, C NMR, mass spectrometry, and IR spectroscopy. The compounds demonstrated notable cytotoxic effects when tested against a range of cancer cell lines, with a specific inhibition observed in triple-negative breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!