A segmental rabbit femur defect was repaired using an empty bioactive titanium (BAT) mesh cage. A 10mm long titanium mesh cage was positioned in the bony defect and reinforced by intramedullary fixation. The BAT surface was prepared by chemical and thermal treatment. Pure titanium cages were used as a control. Torsional stiffness of the BAT group at 4 weeks was approximately equal to, and at 8 weeks twice, that of the intact femur. Differences between the torsional stiffness of the control and BAT groups were significant at both time intervals. Histological examinations showed that woven bone appeared around the cage by 4 weeks and transformed to lamella bone by 8 weeks. New bone bonded to the BAT surface without an intervening layer. The BAT cage enhanced the bone repairing process and achieved faster repair of long bone segmental defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0142-9612(03)00221-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!