The present in vitro study investigates the cellular interaction of primary human osteoblasts with human and bovine solvent dehydrated cancellous bone (SDCB) discs. These are bio-implants from solvent dehydrated, gamma-irradiated preserved human and bovine cancellous bone, pre-treated to remove all cells, genetic components and water soluble proteins. Primary human osteoblasts were harvested from cancellous chips of trauma patients undergoing osteosynthesis with bone grafting from the iliac crest. All patients provided informed consent. The present investigation tested proliferation, synthesis of phenotypic marker, and morphology of primary cultured human osteoblasts on SDCB in vitro. The total protein and collagen type 1 content could not be revealed, due to the inherent naturally occurring protein content in these two bio-implants. In conclusion, our in vitro results suggest that SDCB may be a suitable bone substitute which provides a well structured and biocompatible scaffold for ingrowing human osteoblasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0142-9612(03)00205-9 | DOI Listing |
Sci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.
View Article and Find Full Text PDFNutrients
January 2025
College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA.
Biological aging is a substantial change that leads to different diseases, including osteoporosis (OP), a condition involved in loss of bone density, deterioration of bone structure, and increased fracture risk. In old people, there is a natural decline in bone mineral density (BMD), exacerbated by hormonal changes, particularly during menopause, and it continues in the early postmenopausal years. During this transition time, hormonal alterations are linked to elevated oxidative stress (OS) and decreased antioxidant defenses, leading to a significant increase in OP.
View Article and Find Full Text PDFPathogens
January 2025
Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria.
Background: The burden of prosthetic joint infection in combination with antibiotic-resistant bacterial strains is a rising dilemma for patients experiencing total joint replacements. Around 0.8-2% of patients experience prosthetic joint infections, while up to 21% of patients are considered fatal cases after 5 years.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
Tooth/skeletal dysplasia, such as hypophosphatasia (HPP), has been extensively studied. However, there are few definitive treatments for these diseases owing to the lack of an in vitro disease model. Cells differentiated from patient-derived induced pluripotent stem cells (iPSCs) demonstrate a pathological phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!