Rice seedlings release momilactone B into the environment.

Phytochemistry

Department of Biochemistry and Food Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.

Published: July 2003

Since the growth inhibitor momilactone B was found recently in root exudates of rice (Oryza sativa L.), 3-day-old rice seedlings were transferred to hydroponic culture and the level of momilactone B released into the environment from the seedlings was measured. At day 15 after transfer, the level of momilactone B in the culture solution was 1.8 nmol per seedling compared with endogenous levels of 0.32 and 0.63 nmol per root and shoot, respectively, suggesting that rice seedlings actively releases momilactone B into the culture solution. This release must occur from the roots because only rice roots were immersed in the culture solution. Momilactone B inhibited the growth of ten cress (Lepidium sativum L.) seedlings at concentrations greater than 3 microM. Ten rice seedlings were incubated with ten cress seeds in a Petri dish containing 1 ml of medium, the medium contained 18 nmol of momilactone B, which came to 18 microM. This level of momilactone B was enough to reveal growth inhibition of the cress seedlings. Release level of momilactone B and its effectiveness as a growth inhibitor suggest that it may play an important role in rice allelopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0031-9422(03)00194-8DOI Listing

Publication Analysis

Top Keywords

rice seedlings
16
level momilactone
16
culture solution
12
momilactone
9
seedlings release
8
growth inhibitor
8
momilactone culture
8
ten cress
8
rice
7
seedlings
6

Similar Publications

Drought stress remains a serious concern in L. var , cultivar Satabdi (IET4786) production, particularly during the earliest growth phases, ultimately affecting yield due to the recent trend of delayed rain arrival in West Bengal, India. This study aimed to develop a cost-effective strategy to improve the drought tolerance capacity of rice seedlings by priming the seeds with flavonoid-enriched extract (FEE) of French marigold () petals to withstand the initial drought milieu.

View Article and Find Full Text PDF

Rice salt tolerance is highly anticipated to meet global demand in response to decreasing farmland and soil salinization. Therefore, dissecting the genetic loci controlling salt tolerance in rice for improving productivity is of utmost importance. Here, we evaluated six salt-tolerance-related traits of a biparental mapping population comprising 280 F2 rice individuals (Oryza sativa L.

View Article and Find Full Text PDF

Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles.

View Article and Find Full Text PDF

Salt stress represents a significant abiotic stress factor that impedes the growth of rice. Nano-silicon has the potential to enhance rice growth and salt tolerance. In this experiment, the rice variety 9311 was employed as the test material to simulate salt stress via hydroponics, with the objective of investigating the mitigation effect of foliar application of nano-silicon on rice seedlings.

View Article and Find Full Text PDF

Overexpression of the general transcription factor OsTFIIB5 alters rice development and seed quality.

Plant Cell Rep

January 2025

Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India.

Overexpression of general transcription factor OsTFIIB5 in rice affects seedling growth, plant height, flowering time, panicle architecture, and seed protein/starch levels and involves modulation of expression of associated genes. TFIIB, a key general transcription factor (GTF), plays a critical role in pre-initiation complex (PIC) formation and facilitates RNA polymerase II-mediated transcription. In humans and yeast, TFIIB is encoded by a single gene; however, in plants it is encoded by a multigene family whose products may perform specialized transcriptional functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!