The attacks on the World Trade Center (WTC) Towers on September 11, 2001, represented the single largest terrorist-related mass fatality incident in the history of the United States. More than 2,700 individuals of varied racial and ethnic background lost their lives that day. Through the efforts of thousands of citizens, including recovery workers, medical examiners, and forensic scientists, the identification of approximately 1,500 victims had been accomplished through June 2003 (the majority of these identifications were made within the first 8-12 months). The principal role of The Bode Technology Group (Bode) in this process was to develop a quality, high throughput DNA extraction and short tandem repeat (STR) analysis procedure for skeletal elements, and to provide STR profiles to the Office of the Chief Medical Examiner (OCME) in New York City to be used for identification of the victims. A high throughput process was developed to include electronic accessioning of samples, so that the numbering system of the OCME was maintained; rapid preparation and sampling of skeletal fragments to allow for the processing of more than 250 fragments per day; use of a 96-well format for sample extraction, DNA quantification, and STR analysis; and use of the Applied Biosystems 3100 and 3700 instrumentation to develop STR profiles. Given the highly degraded nature of the skeletal remains received by Bode, an advanced DNA extraction procedure was developed to increase the quantity of DNA recovery and reduce the co-purification of polymerase chain reaction (PCR) amplification inhibitors. In addition, two new STR multiplexes were developed specifically for this project, which reduced the amplicon size of the STR loci, and therefore, enhanced the ability to obtain results from the most challenged of samples. In all, the procedures developed allowed for the analysis of more than 1,000 skeletal samples each week. Approximately 13,000 skeletal fragments were analyzed at least once, for a total of more than 18,000 analyses, and greater than 8,000 of the skeletal samples produced STR results (65%). The percentage of successful results was low in relation to previous mass fatality incidents involving airline disasters. However, when this same process was applied to the analysis of skeletal remains from the American Airlines Flight 587 disaster that occurred on November 12, 2001, the success rate was in line with expected results (ie, greater than 92% of the skeletal remains produced results). This illustrated the quality aspects of the procedure and the degree of degradation that had occurred for the remains of the WTC victims. For future mass fatality incidents, the quality, high throughput procedures developed by Bode will allow for more rapid DNA analysis of victim remains, more rapid identification of victims, and thus more rapid return of remains to family members.

Download full-text PDF

Source

Publication Analysis

Top Keywords

high throughput
16
quality high
12
skeletal samples
12
identification victims
12
mass fatality
12
skeletal remains
12
skeletal
9
throughput dna
8
dna analysis
8
analysis procedure
8

Similar Publications

The value of metagenomic next-generation sequencing in the diagnosis of fever of unknown origin.

Sci Rep

January 2025

Department of Clinical laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, YongWaiZheng Street, Nanchang, 330006, China.

Fever of unknown origin (FUO) caused by infection is a disease state characterized by complex pathogens and remains a diagnostic dilemma. Metagenomic next-generation sequencing (mNGS) technology is a promising diagnostic tool for identifying pathogenic microbes of FUO caused by infection. Little is known about the clinical impact of mNGS in the etiological diagnosis of FUO.

View Article and Find Full Text PDF

Deubiquitinating enzymes (DUBs) are key regulators of cellular homoeostasis, and their dysregulation is associated with several human diseases. The ovarian tumour protease (OTU) family of DUBs are biochemically well-characterised and of therapeutic interest, yet only a few tool compounds exist to study their cellular function and therapeutic potential. Here we present a chemoproteomics fragment screening platform for identifying novel DUB-specific hit matter, that combines activity-based protein profiling with high-throughput chemistry direct-to-biology optimisation to enable rapid elaboration of initial fragment hits against OTU DUBs.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most prevalent, treatment-resistant, and fatal form of brain malignancy. It is characterized by genetic heterogeneity, and an infiltrative nature, and GBM treatment is highly challenging. Despite multimodal therapies, clinicians lack efficient prognostic and predictive markers.

View Article and Find Full Text PDF

Massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).

Nat Commun

January 2025

School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.

Chip scale DNA synthesis offers a high-throughput and cost-effective method for large-scale DNA-based information storage. Nevertheless, unbiased information retrieval from low-copy-number sequences remains a barricade that largely arises from the indispensable DNA amplification. Here, we devise a simulation-guided quantitative primer-template hybridization strategy to realize massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).

View Article and Find Full Text PDF

Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) can mediate tumor regression, including complete and durable responses, in a range of solid cancers, most notably in melanoma. However, its wider application and efficacy has been restricted by the limited accessibility, proliferative capacity and effector function of tumor-specific TIL. Here, we develop a platform for the efficient identification of tumor-specific TCR genes from diagnostic tumor biopsies, including core-needle biopsies frozen in a non-viable format, to enable engineered T cell therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!