Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2.

Proc Natl Acad Sci U S A

Department of Pharmacology, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065, USA.

Published: June 2003

Mice lacking the chemokine receptor chemotactic cytokine receptor 2 (CCR2) have a marked attenuation of monocyte recruitment in response to various inflammatory stimuli and a reduction of inflammatory lesions in models of demyelinating disease. In the present study, we compared nociceptive responses in inflammatory and neuropathic models of pain in CCR2 knockout and wild-type mice. In acute pain tests, responses were equivalent in CCR2 knockout and wild-type mice. In models of inflammatory pain, CCR2 knockout mice showed a 70% reduction in phase 2 of the intraplantar formalin-evoked pain response but only a modest (20-30%) and nonsignificant reduction of mechanical allodynia after intraplantar Freund's adjuvant (CFA). In a model of neuropathic pain, the development of mechanical allodynia was totally abrogated in CCR2 knockout mice. CFA administration induced marked up-regulation of CCR2 mRNA in the skin and a moderate increase in the sciatic nerve and dorsal root ganglia (DRG). In response to nerve ligation, persistent and marked up-regulation of CCR2 mRNA was evident in the nerve and DRG. Disruption of Schwann cells in response to nerve lesion resulted in infiltration of CCR2-positive monocytes/macrophages not only to the neuroma but also to the DRG. Chronic pain also resulted in the appearance of activated CCR2-positive microglia in the spinal cord. Collectively, these data suggest that the recruitment and activation of macrophages and microglia peripherally and in neural tissue may contribute to both inflammatory and neuropathic pain states. Accordingly, blockade of the CCR2 receptor may provide a novel therapeutic modality for the treatment of chronic pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC164693PMC
http://dx.doi.org/10.1073/pnas.1331358100DOI Listing

Publication Analysis

Top Keywords

ccr2 knockout
16
neuropathic pain
12
pain
9
ccr2
9
mice lacking
8
lacking chemokine
8
chemokine receptor
8
receptor ccr2
8
inflammatory neuropathic
8
pain ccr2
8

Similar Publications

Macrophages play a vital role in the inflammation and repair processes of ischemia/reperfusion-induced acute kidney injury (IR-AKI). The mechanosensitive ion channel Piezo1 is significant in these inflammatory processes. However, the exact role of macrophage in IR-AKI is unknown.

View Article and Find Full Text PDF

Orchestrating the frontline: HDAC3-miKO recruits macrophage reinforcements for accelerated myelin debris clearance after stroke.

Theranostics

January 2025

State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.

Article Synopsis
  • White matter is crucial for recovery after ischemic strokes, and recent research suggests microglial HDAC3 may contribute to white matter injury.
  • Researchers created knockout mice lacking microglial HDAC3 to study its effects on white matter using various techniques, revealing that these mice showed improved repair and function.
  • The study found that HDAC3-deficient microglia enhanced the recruitment of macrophages to clear myelin debris, which plays a significant role in remyelination and recovery post-stroke.
View Article and Find Full Text PDF

Myeloid-Derived Suppressor Cell Accumulation Drives Intestinal Fibrosis through mCCL6/hCCL15 Chemokine-Mediated Fibroblast Activation.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China.

Intestinal fibrosis, a severe complication of Crohn's disease (CD), is linked to chronic inflammation, but the precise mechanism by which immune-driven intestinal inflammation leads to fibrosis development is not fully understood. This study investigates the role of myeloid-derived suppressor cells (MDSCs) in intestinal fibrosis in CD patients and a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse model. Elevated MDSCs are observed in inflamed intestinal tissues prior to fibrosis and their sustained presence in fibrotic tissues of both CD patients and murine models.

View Article and Find Full Text PDF

Brd4 modulates metabolic endotoxemia-induced inflammation by regulating colonic macrophage infiltration in high-fat diet-fed mice.

Commun Biol

December 2024

Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.

High-fat diet (HFD) induces low-grade chronic inflammation, contributing to obesity and insulin resistance. However, the precise mechanisms triggering obesity-associated metabolic inflammation remain elusive. In this study, we identified epigenetic factor Brd4 as a key player in this process by regulating the expression of Ccr2/Ccr5 in colonic macrophage.

View Article and Find Full Text PDF

Central nervous system (CNS) resident memory CD8 T cells (T) that express IFN-γ contribute to neurodegenerative processes, including synapse loss, leading to memory impairment. Here, we show that CCR2 signaling in CD8 T that persist within the hippocampus after recovery from CNS infection with West Nile virus (WNV) significantly prevents the development of memory impairments. Using CCR2-deficient mice, we determined that CCR2 expression is not essential for CNS T cell recruitment or virologic control during acute WNV infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!