Silencing of mouse Aprt is a gradual process in differentiated cells.

Mol Cell Biol

Center for Research on Occupational and Environmental Toxicology, Oregon Health and Sciences University, Portland, Oregon 97239, USA.

Published: July 2003

Mouse Aprt constructs that are highly susceptible to DNA methylation-associated inactivation in embryonal carcinoma cells were transfected into differentiated cells, where they were expressed. Construct silencing was induced by either whole-cell fusion of the expressing differentiated cells with embryonal carcinoma cells or by treatment of the differentiated cells with the DNA demethylating agent 5-aza-2'-deoxycytidine. Induction of silencing was enhanced significantly by the presence of a methylation center fragment positioned upstream of a truncated promoter comprised of two functional Sp1 binding sites. Initial silencing of the Aprt constructs was unstable, as evidenced by high spontaneous reversion frequencies ( approximately 10(-2)). Stably silenced subclones with spontaneous reversion frequencies of <10(-5) were isolated readily from the unstably silenced clones. These reversion frequencies were enhanced significantly by treatment of the cells with 5-aza-2'-deoxycytidine. A bisulfite sequence analysis demonstrated that CpG methylation initiated within the methylation center region on expressing alleles and that the induction of silencing allowed methylation to spread towards and eventually into the promoter region. Combined with the induction of revertants by 5-aza-2'-deoxycytidine, this result suggested that stabilization of silencing was due to an increased density of CpG methylation. All allelic methylation patterns were variegated, which is consistent with a gradual and evolving process. In total, our results demonstrate that silencing of mouse Aprt is a gradual process in the differentiated cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC164859PMC
http://dx.doi.org/10.1128/MCB.23.13.4461-4470.2003DOI Listing

Publication Analysis

Top Keywords

differentiated cells
16
mouse aprt
8
aprt constructs
8
embryonal carcinoma
8
carcinoma cells
8
spontaneous reversion
8
reversion frequencies
8
cells
6
silencing
4
silencing mouse
4

Similar Publications

The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.

View Article and Find Full Text PDF

Mechanistic insights and approaches for beta cell regeneration.

Nat Chem Biol

January 2025

Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.

Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms.

View Article and Find Full Text PDF

Optimization of the intron sequences combined with the CMV promoter increases recombinant protein expression in CHO cells.

Sci Rep

January 2025

International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China.

To meet the requirements of the biopharmaceutical industry, improving the yield of recombination therapeutic protein (RTP) from Chinese hamster ovary (CHO) cells is necessary. The human cytomegalovirus (CMV) promoter is widely used for RTP expression in CHO cells. To further improve RTP production, we truncated the human CMV intron and further evaluated the effect of four synthetic introns, including ctEF-1α first, EF-1α first, chimeric, and β-globin introns combined with the CMV promoter on recombinant expression levels in transient and stably recombinant CHO cells.

View Article and Find Full Text PDF

Shaping epithelial tissues by stem cell mechanics in development and cancer.

Nat Rev Mol Cell Biol

January 2025

Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.

Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!