Chitosan is a biopolymer that exhibits osteoconductive, enhanced wound healing and antimicrobial properties which make it attractive for use as a bioactive coating to improve osseointegration of orthopaedic and craniofacial implant devices. Coatings made from 91.2% de-acetylated chitosan were chemically bonded to titanium coupons via silane-glutaraldehyde molecules. The bond strength of the coatings was evaluated in mechanical tensile tests, and their dissolution and cytocompatibility were evaluated in vitro using cell-culture medium and UMR 106 osteoblastic cells, respectively. The results showed that the chitosan coatings were chemically bonded to the titanium substrate and that the bond strengths (1.5-1.8 MPa) were not affected by gas sterilization. However, the chitosan bond strengths were less than those reported for calcium-phosphate coatings. The gas-sterilized coatings exhibited little dissolution over 8 weeks in cell-culture solution, and the attachment and growth of the UMR 106 osteoblast cells was greater on the chitosan-coated samples than on the uncoated titanium. These results indicated that chitosan has the potential to be used as a biocompatible, bioactive coating for orthopaedic and craniofacial implant devices.

Download full-text PDF

Source
http://dx.doi.org/10.1163/156856203766652048DOI Listing

Publication Analysis

Top Keywords

bioactive coating
12
chitosan potential
8
coating orthopaedic
8
orthopaedic craniofacial
8
craniofacial implant
8
implant devices
8
chemically bonded
8
bonded titanium
8
umr 106
8
bond strengths
8

Similar Publications

Magnetic Nanoactuator-Protein Fiber Coated Hydrogel Dressing for Well-Balanced Skin Wound Healing and Tissue Regeneration.

ACS Nano

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China.

Despite significant progress in skin wound healing, it is still a challenge to construct multifunctional bioactive dressings based on a highly aligned protein fiber coated hydrogel matrix for antifibrosis skin wound regeneration that is indistinguishable to native skin. In this study, a "dual-wheel-driven" strategy is adopted to modify the surface of methacrylated gelatin (GelMA) hydrogel with highly aligned magnetic nanocomposites-protein fiber assemblies (MPF) consisting of photothermal responsive antibacteria superparamagnetic nanocomposites-fibrinogen (Fg) complexes as the building blocks. Whole-phase healing properties of the modified hydrogel dressing, GelMA-MPF (GMPF), stem from the integration of Fg protein with RGD peptide activity decorated on the surface of the antibacterial magnetic nanoactuator, facilitating facile and reproducible dressing preparation by self-assembly and involving biochemical, morphological, and biophysical cues.

View Article and Find Full Text PDF

Cancers still globally endanger millions of people yearly; the incidences/mortalities of colorectal cancers are particularly increasing. The natural nanoparticles (NPs) and marine biopolymers were anticipated to provide effectual safe significances for managing cancers. The transformation of curcumin to nano-curcumin (NCur) was conducted with gum Arabic.

View Article and Find Full Text PDF

Enhancing drying characteristics and quality of fruits and vegetables using biochemical drying improvers: A comprehensive review.

Compr Rev Food Sci Food Saf

January 2025

Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.

Traditional drying is a highly energy-intensive process, accounting for approximately 15% of total manufacturing cost, it often resulting in reduced product quality due to low drying efficiency. Biological and chemical agents, referred to as biochemical drying improvers, are employed as pretreatments to enhance both drying characteristics and quality attributes of fruits and vegetables. This article provides a thorough examination of various biochemical drying improvers (including enzymes, microorganisms, edible film coatings, ethanol, organic acids, hyperosmotic solutions, ethyl oleate alkaline solutions, sulfites, cold plasma, carbon dioxide, ozone, inorganic alkaline agents, and inorganic salts) and their effects on improving the drying processes of fruits and vegetables.

View Article and Find Full Text PDF

Curcumin (CUR) is a polyphenolic compound extracted from plants with a wide range of pharmacological activities. However, the low stability and bioavailability limits its practical application. This work utilized the chitosan (CH) and sodium alginate (SA) to modify the surface of the liposome to improve the stability of curcumin.

View Article and Find Full Text PDF

Inspired by the fundamental attribute of chirality in nature, chiral-engineered biomaterials now represent a groundbreaking frontier in biomedical fields. However, the integration of chirality within inorganic materials remains a critical challenge and developments of chirality-induced bionic bone implants are still in infancy. In this view, novel chiral hydroxyapatite (CHA) coated Ti alloys are successfully synthesized by a sophisticated chiral molecule-induced self-assembly method for the first time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!