The purpose of this study was to develop a strain of canine X-linked muscular dystrophy (CXMD), a model of Duchenne muscular dystrophy, in Japan. A female beagle was artificially inseminated with frozen-thawed spermatozoa derived from an affected golden retriever. Subsequently, two carrier female dogs (G1 carriers) and four normal male littermates were produced. Thereafter, the two G1 carriers were mated with beagle sires. As a result, each bitch whelped three times, and out of 54 pups, 17 affected male descendants, and 11 carrier female descendants (G2 carriers) were detected. One G2 carrier was then mated with a beagle sire and 15 pups in two whelpings were produced, including five affected males and four carrier females (G3 carriers). A total of 10 female beagles were artificially inseminated to evaluate the fertility of the frozen-thawed spermatozoa from the two affected dogs. The whelping rates of the two affected dogs were 4/5 and the litter sizes were 5.0 +/- 1.41 and 6.0 +/- 0.82, respectively. These results indicate that a canine X-linked muscular dystrophy colony has been established in Japan. We called them CXMDJ.

Download full-text PDF

Source
http://dx.doi.org/10.1538/expanim.52.93DOI Listing

Publication Analysis

Top Keywords

muscular dystrophy
16
canine x-linked
12
x-linked muscular
12
dystrophy japan
8
artificially inseminated
8
frozen-thawed spermatozoa
8
carrier female
8
mated beagle
8
muscular
4
dystrophy
4

Similar Publications

Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.

View Article and Find Full Text PDF

Serum metabolomic signatures of patients with rare neurogenetic diseases: an insight into potential biomarkers and treatment targets.

Front Mol Neurosci

January 2025

Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.

Introduction: To further advance our understanding of Muscular Dystrophies (MDs) and Spinocerebellar Ataxias (SCAs), it is necessary to identify the biological patterns associated with disease pathology. Although progress has been made in the fields of genetics and transcriptomics, there is a need for proteomics and metabolomics studies. The present study aimed to be the first to document serum metabolic signatures of MDs (DMD, BMD, and LGMD 2A) SCAs (SCA 1-3), from a South Asian perspective.

View Article and Find Full Text PDF

Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.

View Article and Find Full Text PDF

The patient was a 33-year-old woman with no family history of a similar disorder. At one year of age, she exhibited scoliosis and respiratory failure, necessitating a tracheostomy performed at 5 years of age (1990s). During that time, the patient was provisionally diagnosed with "non-Fukuyama congenital muscular dystrophy" via muscle biopsy.

View Article and Find Full Text PDF

Sarcoglycanopathies are rare forms of severe muscular dystrophies currently without a therapy. Mutations in sarcoglycan (SG) genes cause the reduction or absence of the SG-complex, a tetramer located in the sarcolemma that plays a protective role during muscle contraction. Missense mutations in SGCA, which cause α-sarcoglycanopathy, otherwise known as LGMD2D/R3, lead to folding defective forms of α-SG that are discarded by the cell quality control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!