Release from transdermal delivery systems. Application of a new non isothermic method to Trans-Ver-Sal patches.

Boll Chim Farm

Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Università di Messina, Messina, Italia.

Published: April 2003

In this paper a new non isothermic method for the determination of the release drug rate constant (k) from a transdermal delivery system is proposed. The new method was applied to transdermal patches Trans-Ver-Sal. The results obtained prove to be able to release salicylic acid of transdermal system and the effectiveness of the new method propose.

Download full-text PDF

Source

Publication Analysis

Top Keywords

transdermal delivery
8
isothermic method
8
release transdermal
4
delivery systems
4
systems application
4
application isothermic
4
method
4
method trans-ver-sal
4
trans-ver-sal patches
4
patches paper
4

Similar Publications

Aim: Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.

Method: A 3 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties.

View Article and Find Full Text PDF

Microneedle-delivered adeno-associated virus vaccine amplified anti-viral immunity by improving antigen-presenting cells infection.

J Control Release

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. Electronic address:

Adeno-associated viruses (AAV) have significant potential as vaccine carriers due to their excellent biosafety and efficient antigen gene delivery. However, most AAV vaccines show limited capacity to transduce antigen-presenting cells (APCs) following intramuscular injection which may cause inadequate cellular immune responses and undesired side effects due to transducing other tissues or cells. Herein, we developed a soluble microneedle patch for targeting the AAV vaccines to the epidermal and dermal APCs.

View Article and Find Full Text PDF

Aim: The study aimed to formulate solid lipid nanoparticles (SLNs) for the transdermal delivery of PPL to improve skin retention and efficacy.

Materials And Method: The particle size distribution of SLNs was determined and the morphology of SLNs was also analyzed by SEM. , and evaluations were done for PPL loaded SLN.

View Article and Find Full Text PDF

Aim: This study aimed to develop and evaluate lornoxicam (LXM) and thiocolchicoside (TCS) transferosomal transdermal patches.

Background: Oral administration of LXM and TCS can lead to gastric irritation, necessitating alternative delivery methods for pain and inflammation relief. Incorporating LXM & TCS into transferosomes within a transdermal patch offers a potential solution.

View Article and Find Full Text PDF

The rising incidence of skin disorders has necessitated the exploration of innovative therapeutic modalities that harness the beneficial properties of natural compounds. Phytoconstituents, renowned for their diverse pharmacological attributes, present considerable promise in the management of various dermatological conditions. This review delineates the integration of phytoconstituents into ethosomal formulations, which are advanced lipid-based carriers specifically designed to enhance transdermal delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!