Download full-text PDF

Source

Publication Analysis

Top Keywords

[stem cells--the
4
cells--the emperor's
4
emperor's clothes?]
4
[stem
1
emperor's
1
clothes?]
1

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

STEM Neurology & Neuropsychological0 Research Group Egypt (SNRGE), Port Said, Port Said, Egypt.

Background: The olfactory mucosa cells are capable of lifelong neurogenesis providing a viable source of progenitor cells. Olfactory mucosa progenitor cells (OMPCs) have alleviated several cerebral ischemia/reperfusion damage markers. OMPCs are safely obtainable from the upper nasal cavity.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, NY, Iran (Islamic Republic of).

Background: Alzheimer's disease (AD) is a degenerative condition characterized by a progressive decline in cognitive function, predominantly affecting older individuals. AD is associated with a range of histopathological alterations, including the gradual demise of neuronal cells, the accumulation of amyloid plaques, and the formation of neurofibrillary tangles. Furthermore, research suggests that the brain tissue of AD patients is subject to oxidative stress, which manifests as the oxidation of proteins, lipids, DNA, and the process of glycoxidation, throughout the disease progression.

View Article and Find Full Text PDF

[Acquisition of Primary Ph Bone Marrow Cells and Establishment of Ph B-ALL Mouse Model].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2024

Blood Disease Institute, Xuzhou Medical University,Xuzhou 221000, Jiangsu Province, China.

Article Synopsis
  • The objective of the study was to harvest primary Philadelphia chromosome-positive (Ph) cells from B-acute lymphoblastic leukemia (B-ALL) and create a B-ALL mouse model.
  • Methods included infecting bone marrow cells from C57BL/6J mice with a retrovirus, followed by the transplantation of transfected cells into irradiated mice, resulting in the establishment of multiple generations of Ph cells.
  • The results showed significant health deterioration in the mice post-transplant, with pathological features such as weight loss and leukemic cell infiltration in the liver, confirming the successful creation of a B-ALL mouse model through progressive passages of Ph cells.
View Article and Find Full Text PDF

[Establishment and Application of Efficient Gene Editing Method for Classical HLA-I Molecules].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2024

Institute of Transfusion Medicine, Blood Center of Zhejiang Province, Hangzhou 310052, Zhejiang Province, China.

Objective: To establish an efficient gene editing method of HLA-I gene to prepare HLA-I universal hematopoietic stem cells.

Methods: The easyedit small guide RNA(sgRNA) was designed according to the sequences of β2 microglobulin gene and synthesized by GenScript company. RNP complexes were formed by NLS-Cas9-NLS nuclease and Easyedit sgRNA according to different molar ratios (1∶1~1∶4).

View Article and Find Full Text PDF

Background: Liver hepatocellular carcinoma (LIHC) ranks as the foremost cause of cancer-related deaths worldwide, and its early detection poses considerable challenges. Current prognostic indicators, including alpha-fetoprotein, have notable limitations in their clinical utility, thereby underscoring the necessity for discovering new biomarkers to improve early diagnosis and enable personalized treatment options.

Method: This investigation employed single-cell analysis techniques to identify stem cell-associated genes and assess their prognostic significance for LIHC patients, as well as the efficacy of immunotherapy, utilizing nonnegative matrix factorization (NMF) cluster analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!