Xyloglucan (XyG) is a load-bearing primary wall component in dicotyledonous and non-graminaceous monocotyledonous plants. XyG fucosyltransferase (FUTase), encoded by the Arabidopsis gene AtFUT1, directs addition of fucose (Fuc) residues to terminal galactose residues on XyG side chains. Reverse transcription-polymerase chain reaction and analysis of promoter-beta-glucuronidase transgenic plants indicated highest expression of AtFUT1 in the upper portion of elongating inflorescence stems of Arabidopsis. XyG FUTase activity was highest in Golgi vesicles prepared from growing Arabidopsis tissues and low in those isolated from mature tissues. There was no discernible correlation between the Fuc contents of XyG oligosaccharides derived from different Arabidopsis organs and the level of AtFUT1 expression in the organs. Thus, organ-specific variations in AtFUT1 expression and enzyme activity probably reflect differential rates of cell wall biosynthesis, rather than differences in levels of XyG fucosylation. The effects of manipulating AtFUT1 expression were examined using an Arabidopsis mutant (atfut1) containing a T-DNA insertion in the AtFUT1 locus and transgenic plants with strong constitutive expression of AtFUT1. No Fuc was detected in XyG derived from leaves or roots of atfut1. Plants overexpressing AtFUT1 had higher XyG FUTase activity than wild-type plants, but the XyG oligosaccharides derived from the transgenic and wild-type plants contained comparable amounts of Fuc, indicating that suitable acceptor substrates are limiting. Galactosyl residues had slightly higher levels of O-acetylation in XyG from plants that overexpressed AtFUT1 than in XyG from wild-type plants. O-Acetylation of galactose residues was considerably reduced in Fuc-deficient mutants (atfut1, mur1, and mur2) that synthesize XyG containing little or no Fuc. These results suggest that fucosylated XyG is a suitable substrate for at least one O-acetyltransferase in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC167016 | PMC |
http://dx.doi.org/10.1104/pp.102.016642 | DOI Listing |
J Environ Manage
January 2025
School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China. Electronic address:
Acoustic cavitation is a cutting-edge and eco-friendly advanced oxidation technology with significant efficacy in removing organic pollutants from water. Despite its potential, research on the degradation of o-cresol, a common and challenging phenolic pollutant, is limited. This study systematically investigates the optimal conditions for degrading o-cresol via acoustic cavitation and evaluates its application potential through extensive pilot tests.
View Article and Find Full Text PDFChemosphere
February 2025
School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China. Electronic address:
Acoustic cavitation is an advanced, eco-friendly oxidation technology effective in removing organic pollutants from water. However, research on its use for degrading phenol, a common and challenging phenolic pollutant, is limited. This study explores the optimal conditions for phenol degradation using acoustic cavitation and assesses its practical application through extensive pilot tests.
View Article and Find Full Text PDFFood Res Int
November 2024
Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China. Electronic address:
Dietary oligo- and polysaccharides modulate gut microbiota and thus exert prebiotic activity, which is determined by their heterogeneous structure. To explore the correlations between monosaccharide profile and microbial community, simulated gut fermentation of different glycans, including arabinan (ArB), galactooligosaccharide (GOS), arabinogalactan (ArG), rhamnogalacturonan (RhG), and xyloglucan (XyG) that are characterized by typical sugar residues were performed. Results showed that RhG displayed high contents of galacturonic acid (344.
View Article and Find Full Text PDFPharmacol Res
December 2024
Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China. Electronic address:
Ischemic stroke is a high-mortality disease that urgently requires new therapeutic strategies. Insufficient cerebral blood supply can induce poly (ADP-ribose) polymerase (PARP) activation and mitochondrial dysfunction, leading to tissue damage and motor dysfunction. We demonstrate that the expression of TCDD inducible PARP (TIPARP) is elevated in ischemic stroke patients and mice.
View Article and Find Full Text PDFBioorg Med Chem
November 2024
State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China. Electronic address:
Opioid agonists, including morphine and its derivatives, have historically been utilized in conventional pain relief therapies. However, the morphine-like side effects associated with these compounds have constrained their broader application in clinical environments. Fortunately, novel compounds that selectively activate μ-opioid receptors (MOR) without activating the β-arrestin2 pathway, such as PZM21 and TRV130, demonstrate the potential to mitigate side effects while maintaining analgesic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!