Tg(PG14) mice express a prion protein (PrP) with a nine-octapeptide insertion associated with a human familial prion disease. These animals spontaneously develop a fatal neurodegenerative disorder characterized by ataxia, neuronal apoptosis, and accumulation in the brain of an aggregated and weakly protease-resistant form of mutant PrP (designated PG14(spon)). Brain homogenates from Tg(PG14) mice fail to transmit disease after intracerebral inoculation into recipient mice, indicating that PG14(spon), although pathogenic, is distinct from PrP(Sc), the infectious form of PrP. In contrast, inoculation of Tg(PG14) mice with exogenous prions of the RML strain induces accumulation of PG14(RML), a PrP(Sc) form of the mutant protein that is infectious and highly protease resistant. Like PrP(Sc), both PG14(spon) and PG14(RML) display conformationally masked epitopes in the central and octapeptide repeat regions. However, these two forms differ profoundly in their oligomeric states, with PG14(RML) aggregates being much larger and more resistant to dissociation. Our analysis provides new molecular insight into an emerging puzzle in prion biology, the discrepancy between the infectious and neurotoxic properties of PrP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC164780 | PMC |
http://dx.doi.org/10.1128/jvi.77.13.7611-7622.2003 | DOI Listing |
How mutant prion protein (PrP) leads to neurological dysfunction in genetic prion diseases is unknown. Tg(PG14) mice synthesize a misfolded mutant PrP which is partially retained in the neuronal endoplasmic reticulum (ER). As these mice age, they develop ataxia and massive degeneration of cerebellar granule neurons (CGNs).
View Article and Find Full Text PDFAm J Pathol
September 2009
Veterinary Laboratories Agency, Lasswade Laboratory, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Scotland.
Prion diseases are fatal neurological diseases characterized by central nervous system deposition of abnormal forms of a membrane glycoprotein designated PrP (prion protein). Tg(PG14) transgenic mice express PrP that harbor a nine-octapeptide insertional mutation homologous to one described in a familial prion disease of humans. Tg(PG14) mice spontaneously develop a fatal neurological illness accompanied by massive apoptosis of cerebellar granule neurons and accumulation of an aggregated and weakly protease-resistant form of PrP that is not infectious.
View Article and Find Full Text PDFJ Neurochem
March 2008
Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
A nine-octapeptide insertion in the prion protein (PrP) gene is associated with an inherited form of human prion disease. Transgenic (Tg) mice that express the mouse homolog of this mutation (designated PG14) spontaneously accumulate in their brains an insoluble and weakly protease-resistant form of the mutant protein. This form (designated PG14(Spon)) is highly neurotoxic, but is not infectious in animal bioassays.
View Article and Find Full Text PDFEMBO J
June 2007
Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA.
Familial prion diseases are due to dominantly inherited, germline mutations in the PRNP gene that encodes the prion protein (PrP). The cellular mechanism underlying the pathogenic effect of these mutations remains uncertain. To investigate whether pathogenic mutations impair a normal, physiological activity of PrP, we have crossed Tg(PG14) mice, which express PrP with an octapeptide insertion associated with an inherited prion dementia, with Tg(PrPDelta32-134) mice.
View Article and Find Full Text PDFProteomics
May 2006
Prion Unit, Dulbecco Telethon Institute, Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea, Milano, Italy.
Inherited prion diseases are linked to insertional and point mutations in the prion protein (PrP) gene, which favor conversion of PrP into a conformationally altered, pathogenic isoform. The cellular mechanism by which this process causes neurological dysfunction is unknown. Transgenic (Tg) (PG14) mice express a mouse PrP homolog of a nine-octapeptide insertion associated with an inherited prion disorder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!