The small heterodimer partner interacts with the pregnane X receptor and represses its transcriptional activity.

Mol Endocrinol

Institut National de la Santé et de la Recherche Médicale, Unité 128, Institut Fédératif de Recherche 24, Cedex 05, France.

Published: September 2003

SHP (small heterodimer partner, NR1I0) is an atypical orphan member of the nuclear receptor subfamily in that it lacks a DNA-binding domain. It is mostly expressed in the liver, where it binds to and inhibits the function of nuclear receptors. SHP is up-regulated by primary bile acids, through the activation of their receptor farnesoid X receptor, leading to the repression of cholesterol 7alpha-hydroxylase (CYP7alpha) expression, the rate-limiting enzyme in bile acid production from cholesterol. PXR (pregnane X receptor, NR1I2) is a broad-specificity sensor that recognizes a wide variety of synthetic drugs as well as endogenous compounds such as bile acid precursors. Upon activation, PXR induces CYP3A and inhibits CYP7alpha, suggesting that PXR can act on both bile acid synthesis and elimination. Indeed, CYP7alpha and CYP3A are involved in biochemical pathways leading to cholesterol conversion into primary bile acids, whereas CYP3A is also involved in the detoxification of toxic secondary bile acid derivatives. Here, we show that PXR is a target for SHP. Using pull-down assays, we show that SHP interacts with both murine and human PXR in a ligand-dependent manner. From transient transfection assays, SHP is shown to be a potent repressor of PXR transactivation. Furthermore, we report that chenodeoxycholic acid and cholic acid, two farnesoid X receptor ligands, induce up-regulation of SHP and provoke a repression of PXR-mediated CYP3A induction in human hepatocytes as well as in vivo in mice. These results reveal an elaborate regulatory cascade, tightly controlled by SHP, for both the maintenance of bile acid production and detoxification in the liver.

Download full-text PDF

Source
http://dx.doi.org/10.1210/me.2002-0383DOI Listing

Publication Analysis

Top Keywords

bile acid
20
small heterodimer
8
heterodimer partner
8
pregnane receptor
8
primary bile
8
bile acids
8
farnesoid receptor
8
acid production
8
cyp3a involved
8
assays shp
8

Similar Publications

Bile-Derived cfDNA of Syncytin-1 and SLC7A11 as a Potential Molecular Marker for Early Diagnosis of Cholangiocarcinoma.

J Gastrointest Cancer

January 2025

Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China.

Purpose: Liquid biopsy technology has received widespread attention in the early diagnosis of cholangiocarcinoma (CCA).

Methods: We collected bile samples from 48 patients with CCA and 48 patients with gallstones at Shandong Provincial third Hospital. We quantified bile circulating free DNA (cfDNA) of syncytin-1 and SLC7A11, calculated the correlation between syncytin-1 and SLC7A11 expression and clinical parameters by Spearman rank correlation, plotted Receiver Operating Characteristic (ROC) curves, and compared the Area Under Curve (AUC) values to explored early diagnostic utility in patients.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a degenerative neurological disorder defined by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Current pharmacological treatments for AD only provide symptomatic relief, and there is a lack of definitive disease-modifying therapies. Chemical chaperones, such as 4-Phenylbutyric acid (4PBA) and Tauroursodeoxycholic acid, have shown neuroprotective effects in animal and cell culture models.

View Article and Find Full Text PDF

Background: The diagnostic criteria of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) have not been established due to non-specific clinical manifestations, and our understanding on the treatment outcome is still limited. We aim to investigate the biochemical characteristics, genetic variants, and treatment outcome of NICCD patients.

Methods: We compared the nutritional status and biochemical characteristics of 55 NICCD infants and 27 idiopathic neonatal cholestasis (INC) infants.

View Article and Find Full Text PDF

Background: Cholestasis plays a critical role in sepsis-associated liver injury (SALI). Intestine-derived fibroblast growth factor 19 (FGF19) is a key regulator for bile acid homeostasis. However, the roles and underlying mechanisms of FGF19 in SALI are still unclear.

View Article and Find Full Text PDF

Multi-omics analysis reveals the anti-fatigue mechanism of BCAA-enriched egg white peptides: the role of the gut-muscle axis.

Food Funct

January 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.

Bioactive peptides rich in branched-chain amino acids (BCAAs) are an effective way to alleviate fatigue conditions, but the deep mechanism remains unclear. This study investigated the anti-fatigue effect of branched-chain amino acid-enriched egg white peptides (BEWPs) through the gut-muscle axis by gut bacteria and untargeted metabolomic analyses. The results demonstrated that BEWPs enhanced exercise endurance and strength by also promoting gastrocnemius development in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!