Chlamydophila abortus is a gram-negative obligate intracellular bacterium and the etiological agent of ovine enzootic abortion (OEA), an economically important disease in many countries. Inactivated vaccines have been reported to induce immunity in ewes and they have been used for many years. However, some outbreaks have been reported in correctly vaccinated flocks, so it is clear that new vaccines are necessary to address adequate protection and to avoid the shedding of the microorganism. This idea lead us to design inactivated vaccines, in a previously established mouse model, evaluating different inactivation procedures and new adjuvants. To assess the protection conferred, the results were analyzed on the basis of clinical signs and the isolation of C. abortus from spleen. These findings were correlated with the immune response induced by the vaccines, as determined by the production of C. abortus-specific IFN-gamma and IL-4 from splenocyte cultures and the detection of IgG isotypes in serum. BEI was found to be the best C. abortus-inactivation procedure. The inactivated vaccines adjuvated with QS-21 (QS) or Montanide 773 (M7) induced the best protection both against homologous and heterologous challenge, with an adequate (Th1-like) immune response. Finally, these selected vaccines were evaluated in a pregnant mouse model, in which they were seen to confer good protection and to avoid the C. abortus persistence in uterus after delivery. With these results, this mouse model could be considered as an adequate tool for selecting and optimizing effective vaccines against OEA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0264-410x(03)00255-xDOI Listing

Publication Analysis

Top Keywords

inactivated vaccines
16
mouse model
16
immune response
12
protection conferred
8
vaccines
8
ovine enzootic
8
enzootic abortion
8
protection avoid
8
protection
5
relationship immune
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!