Objective: In order to better understand the spatio-temporal interaction of the activated cortical areas when the movement is visuo-guided and to assess the age effect on the spatio-temporal pattern of cortical activity, we have compared a proximo-distal movement with visual-motor control and hand-eye coordination (targeting movement) with a distal and a proximal movement.
Methods: Brain's electrical activity was studied using the analysis of event-related (de)synchronizations (ERD/S) of cortical mu and beta rhythms in 17 subjects, 8 young and 9 elderly subjects.
Results: In both populations, we found an earlier and broader mu and beta ERD during the preparation of the targeting movement compared to distal and proximal movements, principally involving the contralateral parietal region. During the execution, a spreading over the parietocentral region during proximal movement and over the parietal region during targeting movement was observed. After the execution of proximal and targeting movements, a wider and higher beta ERS was observed only in the young subjects. In the elderly subjects, our results showed a significant decrease of beta ERS during the targeting task.
Conclusions: These results suggest there was a larger recruitment of cortical areas, involving notably the parietal cortex when the movement is visuo-guided. Moreover, cerebral aging-related changes in the spatio-temporal beta ERS pattern suggests an impaired sensory integration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1388-2457(03)00058-0 | DOI Listing |
Oper Neurosurg (Hagerstown)
November 2024
Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA.
Background And Objectives: A typical workflow for deep brain stimulation (DBS) surgery consists of head frame placement, followed by stereotactic computed tomography (CT) or MRI before surgical implantation of the hardware. At some institutions, this workflow is prolonged when the imaging scanner is located far away from the operating room, thereby increasing workflow times by the addition of transport times. Recently, the intraoperative O-arm has been shown to provide accurate image fusion with preoperative CT or MR imaging, suggesting the possibility of obtaining an intraoperative localization scan and postoperative confirmation.
View Article and Find Full Text PDFFacial Plast Surg Aesthet Med
January 2025
Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA.
Selective neurectomy (SN) typically leaves cut nerve endings to be either free-floating or buried in facial muscles. Regenerative peripheral nerve interfaces (RPNIs) use autologous skeletal muscle grafts to provide a nonfacial muscle target for reinnervation. To evaluate the effectiveness of RPNI surgery with SN for improving postoperative facial function through botulinum toxin use and facial movement metrics.
View Article and Find Full Text PDFFront Robot AI
January 2025
Life- and Neurosciences, Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany.
Biological vision systems simultaneously learn to efficiently encode their visual inputs and to control the movements of their eyes based on the visual input they sample. This autonomous joint learning of visual representations and actions has previously been modeled in the Active Efficient Coding (AEC) framework and implemented using traditional frame-based cameras. However, modern event-based cameras are inspired by the retina and offer advantages in terms of acquisition rate, dynamic range, and power consumption.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA.
The subthalamic nucleus is thought to play a crucial role in controlling impulsive actions. Networked among the basal ganglia and receiving input from several cortical areas, the subthalamic nucleus is well positioned to influence action selection when faced with competing and conflicting action outcomes. The purpose of this study was to test the dissociable roles of the dorsal and ventral aspects of the subthalamic nucleus during action conflict in patients with Parkinson's disease undergoing intraoperative neurophysiological recording and to explore a potential mechanism for this inhibitory control.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.
Methods: This study included 107 CRC patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!