STAT5 phosphorylation has been noted in 69-95% of AML cases by Western blotting. We used flow cytometry to measure phosphorylated STAT5 on a semi-quantitative scale. The method was validated on K562 cells, which constitutively express phosphorylated STAT5, but lose this when BCR-abl tyrosine kinase activity is blocked by STI571. Phosphorylated STAT5 was found to measure 2.22+/-0.09 relative fluorescence units (RFU) falling to 0.925+/-0.005RFU in the presence of STI571. Phosphorylated STAT5 expression was 0.99 to 2.09RFU in 28 primary AML samples. There was no logical cut-off point between positive and negative fluorescence. FLT3 internal tandem duplications, found in 11/28 samples, were not significantly associated with the level of phosphorylated STAT5 expression. We conclude that STAT5 phosphorylation can be measured sensitively by flow cytometry in AML and that its expression should not be dichotomised as present or absent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0145-2126(03)00012-2DOI Listing

Publication Analysis

Top Keywords

phosphorylated stat5
24
stat5
8
flt3 internal
8
internal tandem
8
tandem duplications
8
stat5 phosphorylation
8
flow cytometry
8
sti571 phosphorylated
8
stat5 expression
8
phosphorylated
6

Similar Publications

STAT5B is a vital transcription factor for lymphocytes. Here, function of two STAT5B mutations from human T cell leukemias: one substituting tyrosine 665 with phenylalanine (STAT5B ), the other with histidine (STAT5B ) was interrogated. modeling predicted divergent energetic effects on homodimerization with a range of pathogenicity.

View Article and Find Full Text PDF

FLT3 mutations are among the most common genetic alterations in acute myeloid leukemia (AML) and are associated with poor prognosis. Significant advancements have been made in developing FLT3 inhibitors (FLT3Is), such as quizartinib, which have improved treatment outcomes in both newly diagnosed and relapsed/refractory AML. Resistance to FLT3Is remains a major clinical challenge, driven by diverse mechanisms including FLT3 point mutations, cellular escape pathways, and the influence of the bone marrow microenvironment.

View Article and Find Full Text PDF

FLT3 inhibitors induce p53 instability, driven by STAT5/MDM2/p53 competitive interactions in acute myeloid leukemia.

Cancer Lett

January 2025

Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China. Electronic address:

Article Synopsis
  • FLT3 mutations are common in AML, making them a key target for therapy, but resistance to FLT3 inhibitors is a significant challenge.
  • Tyrosine kinase inhibitors (TKIs) promote p53 degradation in FLT3-ITD AML cells through mechanisms involving STAT5 and MDM2, disrupting p53's role as a tumor suppressor.
  • Using MDM2 inhibitors alongside TKIs can stabilize p53 levels, enhancing the effectiveness of treatments and suggesting a promising combination approach for AML therapy.
View Article and Find Full Text PDF

Nobiletin: a potential erythropoietin receptor activator protects renal cells against hypoxia.

Apoptosis

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.

Tangerine peel is a traditional Chinese herb and has been widely applied in foods and medicine for its multiple pharmacological effects. Erythropoietin receptor (EPOR), a member of the cytokine receptor family, is widely expressed in multiple tissues in especial kidney and plays protective effects in adverse physiological and pathological conditions. We hypothesized that it might be EPOR agonists existing in Tangerine peel bring such renal benefits.

View Article and Find Full Text PDF

Novel antileukemic compound with sub-micromolar potency against STAT5 addicted myeloid leukemia cells.

Eur J Med Chem

December 2024

INSERM UMR 1100 CEPR, Research Center for Respiratory Diseases, Team 2 "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", 10 Boulevard Tonnellé, 37032, Tours, France. Electronic address:

Signal Transdcer and Activator of Transcription 5A and 5B (STAT5A/5B) are key effectors of tyrosine kinase oncogenes in myeloid leukemias. It is now clearly evidenced that inhibition of STAT5A/5B not only blocks the growth and survival of myeloid leukemia cells but also overcomes the resistance of leukemic cells to chemotherapy. Previous screening experiments allowed us to identify 17f as a lead compound with promising antileukemic activity that blocks the phosphorylation and transcriptional activity of STAT5A/5B in myeloid leukemia cells addicted to these proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!