A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterisation of recombinant HERG K+ channel blockade by the Class Ia antiarrhythmic drug procainamide. | LitMetric

Characterisation of recombinant HERG K+ channel blockade by the Class Ia antiarrhythmic drug procainamide.

Biochem Biophys Res Commun

Department of Physiology and Cardiovascular Research Laboratories, School of Medical Sciences, University Walk, BS8 1TD, Bristol, UK

Published: June 2003

Class Ia antiarrhythmic drugs, including procainamide (PROC), are associated with cardiac sodium channel blockade, delayed ventricular repolarisation and with a risk of ventricular pro-arrhythmia. The HERG K(+) channel is frequently linked to drug-induced pro-arrhythmia. Therefore, in this study, interactions between PROC and HERG K(+) channels were investigated, with particular reference to potency and mechanism of drug action. Whole-cell patch-clamp recordings of HERG current (I(HERG)) were made at 37 degrees C from human embryonic kidney (HEK 293) cells stably expressing the HERG channel. Following activating pulses to +20 mV, I(HERG) tails were inhibited by PROC with an IC(50) value of approximately 139 microM. I(HERG) blockade was found to be both time- and voltage-dependent, demonstrating contingency upon HERG channel gating. However, I(HERG) inhibition by PROC was relieved by depolarisation to a highly positive membrane potential (+80 mV) that favoured HERG channel inactivation. These data suggest that PROC inhibits the HERG K(+) channel by a primarily 'open' or 'activated' channel state blocking mechanism and that avidity of drug-binding is decreased by extensive I(HERG) inactivation. The potency of I(HERG) blockade by PROC is much lower than for other Class Ia agents that have been studied previously under analogous conditions (quinidine and disopyramide), although the blocking mechanism appears similar. Thus, differences between the chemical structure of PROC and other Class Ia antiarrhythmic drugs may help provide insight into chemical determinants of blocking potency for agents that bind to open/activated HERG channels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-291x(03)00980-xDOI Listing

Publication Analysis

Top Keywords

herg channel
24
class antiarrhythmic
12
herg
9
channel
8
channel blockade
8
antiarrhythmic drugs
8
herg channels
8
iherg blockade
8
blocking mechanism
8
proc
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!