The Sr/Ca ratio of coccoliths was recently proposed as a potential indicator of past growth rates of coccolithophorids, marine algae, which play key roles in both the global carbonate and carbon cycles. We synthesize calibrations of this proxy through laboratory culture studies and analysis of monospecific coccolith assemblages from surface sediments. Cultures of coccolithophorids Helicosphaera carteri, Syracosphaera pulchra and Algirospira robusta confirm a 1-2% increase in Sr/Ca per degrees C previously identified in Emiliania huxleyi and Gephyrocapsa oceanica. This effect is not due merely to increases in growth rate with temperature and must be considered in palaeoceanographic studies. In light-limited cultures of E. huxleyi, Calcidiscus leptoporus and G. oceanica at constant temperature, coccolith Sr/Ca ratios vary by 10% across the range of possible growth and calcification rates for a given species. Among different species under similar culture conditions, Sr/Ca ratios vary by 30%. Although the highest ratios are in the cells with highest calcification and organic carbon fixation rates, at lower rates there is much scatter, indicating that different mechanisms control interspecific and intraspecific coccolith Sr/Ca variations. In field studies in the Equatorial Pacific and Somalia coastal region, coccolith Sr/Ca correlates with upwelling intensity and productivity. A more dynamic response is observed in larger coccoliths like C. leptoporus (23-55% variation in Sr/Ca) than in smaller coccoliths of G. oceanica or Florisphaera profunda (6-15% variation in Sr/Ca). This response suggests that, despite temperature effects, coccolith Sr/Ca has potential as an indicator of coccolithophorid productivity. If the variable Sr/Ca response of different species accurately reflects their variable productivity response to upwelling (and not different slopes of Sr/Ca with productivity), coccolith Sr/Ca could provide useful data on past changes in coccolith ecology. The mechanism of coccolith Sr/Ca variations remains poorly understood but is probably more closely tied to biochemical cycles during carbon acquisition than to chemical kinetic effects on Sr incorporation in the calcite coccolith crystals.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2001.0966DOI Listing

Publication Analysis

Top Keywords

coccolith sr/ca
24
sr/ca
14
sr/ca ratios
12
coccolith
10
potential indicator
8
ratios vary
8
sr/ca variations
8
variation sr/ca
8
sr/ca response
8
potential limitations
4

Similar Publications

Atmospheric dust deposition can modulate the earth's climate and atmospheric CO through fertilising the ocean (nutrient source) and by accelerating the biological carbon pump through fuelling the ballasting process. To distinguish the biogeochemical effects of Saharan dust with respect to fertilization and ballasting, and to gain a broader perspective on the coccolith calcite Sr/Ca in relation to the drivers of coccolith export production, we determined the coccolith-Sr/Ca from a one-year (2012-2013) time-series sediment trap record in the western tropical North Atlantic (M4-49°N/12°W). High Sr/Ca were linked to enhanced export production in the upper part of the photic zone, most notably under windier, dry, and dustier conditions during spring.

View Article and Find Full Text PDF

Coccolithophores are a diverse group of calcifying microalgae that have left a prominent fossil record on Earth. Various coccolithophore relics, both organic and inorganic, serve as proxies for reconstruction of past oceanic conditions. Emiliania huxleyi is the most widely distributed representative of the coccolithophores in modern oceans and is known to engage in dynamic interactions with bacteria.

View Article and Find Full Text PDF

Coccolithophores are phytoplanktonic algae which produce an exoskeleton made of single platelets of calcite named coccoliths. They are widespread in all oceans and directly impact the short- and long-term C cycle. The study of coccolith size, morphology and elemental composition reveals important information regarding the ability of the cell to calcify and on the factors that influence this process.

View Article and Find Full Text PDF

The formation of the coccolith biominerals by a group of marine algae (the Coccolithophores) offers fascinating research avenues both from the biological and geological sides. It is surprising how biomineralisation by a key phytoplanktonic group remains underconstrained, yet is influential on ocean alkalinity and responsible for the built up of our paleoclimatic archive over the last 200 Myrs. Here, we report two close relative coccolith taxa exhibiting substantial bioaccumulation of strontium: Scyphosphaera and Pontosphaera grown in the laboratory or retrieved from Pliocene sediments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!