The purpose of this study was to investigate the efficacy of a novel steroid, fluasterone (DHEF, a dehydroepiandrosterone (DHEA) analog), at improving functional recovery in a rat model of traumatic brain injury (TBI). The lateral cortical impact model was utilized in two studies of efficacy and therapeutic window. DHEF was given (25 mg/kg, intraperitoneally) at the initial time point and once a day for 2 more days. Study A included four groups: sham injury, vehicle treated (n = 22); injured, vehicle treated (n = 30); injured, pretreated (5-10 min prior to injury, n = 24); and injured, posttreated (initial dose 30 min postinjury, n = 15). Study B (therapeutic window) included five groups: sham injury, vehicle treated (n = 17); injured, vehicle treated (n = 26); and three posttreatment groups: initial dose at 30 min (n = 18), 2 h (n = 23), or 12 h (n = 16) postinjury. Three criteria were used to grade functional recovery. In study A, DHEF improved beam walk performance both with pretreatment (79%) and 30-min posttreatment group (54%; p < 0.01, Dunnett vs. injured vehicle). In study B, the 12-h posttreatment group showed a 97% improvement in beam walk performance (p < 0.01, Dunnett). The 30-min and 12-h posttreatment groups showed a decreased incidence of falls from the beam, which reached statistical significance (p < 0.05, Dunnett). Tests of memory (Morris water maze) and neurological reflexes both revealed significant improvements in all DHEF treatment groups. In cultured rat mesangial cells, DHEF (and DHEA) potently inhibited interleukin-1beta-induced cyclooxygenase-2 (COX2) mRNA and prostaglandin (PGE2) production. In contrast, DHEF treatment did not alter injury-induced COX2 mRNA levels in the cortex or hippocampus. However, DHEF (and DHEA) relaxed ex vivo bovine middle cerebral artery preparations by about 30%, with an IC(50) approximately 40 microM. This was a direct effect on the vascular smooth muscle, independent of the endothelial cell layer. Fluasterone (DHEF) treatments improved functional recovery in a rat TBI model. Possible mechanisms of action for this novel DHEA analog are discussed. These findings suggest an exciting potential use for this agent in the clinical treatment of traumatic brain injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456324PMC
http://dx.doi.org/10.1089/089771503765355531DOI Listing

Publication Analysis

Top Keywords

functional recovery
16
vehicle treated
16
recovery rat
12
traumatic brain
12
brain injury
12
treated injured
12
injured vehicle
12
dhef
8
fluasterone dhef
8
dhea analog
8

Similar Publications

Background: Kidney transplantation (KT) is the most effective treatment for end-stage renal disease. End-ischemic hypothermic machine perfusion (EI-HMP) has emerged as a promising method for preserving grafts before transplantation. This study aimed to compare graft function recovery in KT recipients of deceased brain-death (DBD) grafts preserved with EI-HMP versus static cold storage (SCS).

View Article and Find Full Text PDF

High cardiac sympathetic drive and release of the sympathetic cotransmitter neuropeptide Y (NPY) are significant features of congestive heart failure (CHF), in which resting venous NPY levels are known to be associated with mortality. However, whether circulating NPY levels increase during exercise in CHF when they are already elevated is controversial. We sought to establish the dynamics of circulating NPY levels in CHF patients treated with contemporary medical therapy and devices in relationship to indices of performance linked to long-term prognosis.

View Article and Find Full Text PDF

Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.

View Article and Find Full Text PDF

Background: This is a novel rat study using native peptide therapy, focused on reversing quadriceps muscle-to-bone detachment to reattachment and stable gastric pentadecapeptide BPC 157 per-oral therapy for shared muscle healing and function restoration.

Methods: Pharmacotherapy recovering various muscle, tendon, ligament, and bone lesions, and severed junctions (i.e.

View Article and Find Full Text PDF

Plant Adaptation and Soil Shear Strength: Unraveling the Drought Legacy in .

Plants (Basel)

January 2025

Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.

Climate change has led to an increasing frequency of droughts, potentially undermining soil stability. In such a changing environment, the shallow reinforcement effect of plant roots often fails to meet expectations. This study aims to explore whether this is associated with the alteration of plant traits as a response to environmental change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!